Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism.
Ontology highlight
ABSTRACT: Metabolic flux analysis (MFA) is widely used to estimate intracellular fluxes. Conventional MFA, however, is limited to continuous cultures and the mid-exponential growth phase of batch cultures. Dynamic MFA (DMFA) has emerged to characterize time-resolved metabolic fluxes for the entire culture period. Here, the linear DMFA approach was extended using B-spline fitting (B-DMFA) to estimate mass balanced fluxes. Smoother fits were achieved using reduced number of knots and parameters. Additionally, computation time was greatly reduced using a new heuristic algorithm for knot placement. B-DMFA revealed that Chinese hamster ovary cells shifted from 37 °C to 32 °C maintained a constant IgG volume-specific productivity, whereas the productivity for the controls peaked during mid-exponential growth phase and declined afterward. The observed 42% increase in product titer at 32 °C was explained by a prolonged cell growth with high cell viability, a larger cell volume and a more stable volume-specific productivity.
SUBMITTER: Martinez VS
PROVIDER: S-EPMC8193249 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA