Unknown

Dataset Information

0

Identifying Periampullary Regions in MRI Images Using Deep Learning.


ABSTRACT:

Background

Development and validation of a deep learning method to automatically segment the peri-ampullary (PA) region in magnetic resonance imaging (MRI) images.

Methods

A group of patients with or without periampullary carcinoma (PAC) was included. The PA regions were manually annotated in MRI images by experts. Patients were randomly divided into one training set, one validation set, and one test set. Deep learning methods were developed to automatically segment the PA region in MRI images. The segmentation performance of the methods was compared in the validation set. The model with the highest intersection over union (IoU) was evaluated in the test set.

Results

The deep learning algorithm achieved optimal accuracies in the segmentation of the PA regions in both T1 and T2 MRI images. The value of the IoU was 0.68, 0.68, and 0.64 for T1, T2, and combination of T1 and T2 images, respectively.

Conclusions

Deep learning algorithm is promising with accuracies of concordance with manual human assessment in segmentation of the PA region in MRI images. This automated non-invasive method helps clinicians to identify and locate the PA region using preoperative MRI scanning.

SUBMITTER: Tang Y 

PROVIDER: S-EPMC8193851 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7008229 | biostudies-literature
| S-EPMC8590175 | biostudies-literature
| S-EPMC6681554 | biostudies-literature
| S-EPMC8573410 | biostudies-literature
| S-EPMC10217211 | biostudies-literature
| S-EPMC7858223 | biostudies-literature
| S-EPMC8149837 | biostudies-literature
| S-EPMC6107420 | biostudies-literature
| S-EPMC6612039 | biostudies-literature
| S-EPMC8418980 | biostudies-literature