Project description:Expert assessments with pre-defined numerical or language terms can limit the scope of decision-making models. We propose that decision-making models can incorporate expert judgments expressed in natural language through sentiment analysis. To help make more informed choices, we present the Sentiment Analysis in Recommender Systems with Multi-person, Multi-criteria Decision Making (SAR-MCMD) method. This method compiles the opinions of several experts by analyzing their written reviews and, if applicable, their star ratings. The growth of online applications and the sheer amount of available information have made it difficult for users to decide which information or products to select from the Internet. Intelligent decision-support technologies, known as recommender systems, leverage users' preferences to suggest what they might find interesting. Recommender systems are one of the many approaches to dealing with information overload issues. These systems have traditionally relied on single-grading algorithms to predict and communicate users' opinions for observed items. To boost their predictive and recommendation abilities, multi-criteria recommender systems assign numerous ratings to various qualities of products. We created, manually annotated, and released the technique in a case study of restaurant selection using 'TripAdvisor reviews', 'TMDB 5000 movies', and an 'Amazon dataset'. In various areas, cutting-edge deep learning approaches have led to breakthrough progress. Recently, researchers have begun to focus on applying these methods to recommendation systems, and different deep learning-based recommendation models have been suggested. Due to its proficiency with sparse data in large data systems and its ability to construct complex models that characterize user performance for the recommended procedure, deep learning is a formidable tool. In this article, we introduce a model for a multi-criteria recommender system that combines the best of both deep learning and multi-criteria decision-making. According to our findings, the suggested system may give customers very accurate suggestions with a sentiment analysis accuracy of 98%. Additionally, the metrics, accuracy, precision, recall, and F1 score are where the system truly shines, much above what has been achieved in the past.
Project description:This article presents a hybrid recommender framework for smart medical systems by introducing two methods to improve service level evaluations and doctor recommendations for patients. The first method uses big data techniques and deep learning algorithms to develop a registration review system in medical institutions. This system outperforms conventional evaluation methods, thus achieving higher accuracy. The second method implements the term frequency and inverse document frequency (TF-IDF) algorithm to construct a model based on the patient's symptom vector space, incorporating score weighting, modified cosine similarity, and K-means clustering. Then, the alternating least squares (ALS) matrix decomposition and user collaborative filtering algorithm are applied to calculate patients' predicted scores for doctors and recommend top-performing doctors. Experimental results show significant improvements in metrics called precision and recall rates compared to conventional methods, making the proposed approach a practical solution for department triage and doctor recommendation in medical appointment platforms.
Project description:BackgroundHealth recommender systems (HRSs) offer the potential to motivate and engage users to change their behavior by sharing better choices and actionable knowledge based on observed user behavior.ObjectiveWe aim to review HRSs targeting nonmedical professionals (laypersons) to better understand the current state of the art and identify both the main trends and the gaps with respect to current implementations.MethodsWe conducted a systematic literature review according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and synthesized the results. A total of 73 published studies that reported both an implementation and evaluation of an HRS targeted to laypersons were included and analyzed in this review.ResultsRecommended items were classified into four major categories: lifestyle, nutrition, general health care information, and specific health conditions. The majority of HRSs use hybrid recommendation algorithms. Evaluations of HRSs vary greatly; half of the studies only evaluated the algorithm with various metrics, whereas others performed full-scale randomized controlled trials or conducted in-the-wild studies to evaluate the impact of HRSs, thereby showing that the field is slowly maturing. On the basis of our review, we derived five reporting guidelines that can serve as a reference frame for future HRS studies. HRS studies should clarify who the target user is and to whom the recommendations apply, what is recommended and how the recommendations are presented to the user, where the data set can be found, what algorithms were used to calculate the recommendations, and what evaluation protocol was used.ConclusionsThere is significant opportunity for an HRS to inform and guide health actions. Through this review, we promote the discussion of ways to augment HRS research by recommending a reference frame with five design guidelines.
Project description:Among emerging non-volatile storage technologies, redox-based resistive switching Random Access Memory (ReRAM) is a prominent one. The realization of Boolean logic functionalities using ReRAM adds an extra edge to this technology. Recently, 7-state ReRAM devices were used to realize ternary arithmetic circuits, which opens up the computing space beyond traditional binary values. In this manuscript, we report realization of multi-valued and fuzzy logic operators with a representative application using ReRAM devices. Multi-valued logic (MVL), such as Łukasiewicz logic generalizes Boolean logic by allowing more than two truth values. MVL also permits operations on fuzzy sets, where, in contrast to standard crisp logic, an element is permitted to have a degree of membership to a given set. Fuzzy operations generally model human reasoning better than Boolean logic operations, which is predominant in current computing technologies. When the available information for the modelling of a system is imprecise and incomplete, fuzzy logic provides an excellent framework for the system design. Practical applications of fuzzy logic include, industrial control systems, robotics, and in general, design of expert systems through knowledge-based reasoning. Our experimental results show, for the first time, that it is possible to model fuzzy logic natively using multi-state memristive devices.
Project description:Two critical tasks in multi-criteria group decision making (MCGDM) are to describe criterion values and to aggregate the described information to generate a ranking of alternatives. A flexible and superior tool for the first task is q-rung orthopair fuzzy number (qROFN) and an effective tool for the second task is aggregation operator. So far, nearly thirty different aggregation operators of qROFNs have been presented. Each operator has its distinctive characteristics and can work well for specific purpose. However, there is not yet an operator which can provide desirable generality and flexibility in aggregating criterion values, dealing with the heterogeneous interrelationships among criteria, and reducing the influence of extreme criterion values. To provide such an aggregation operator, Muirhead mean operator, power average operator, partitioned average operator, and Archimedean T-norm and T-conorm operations are concurrently introduced into q-rung orthopair fuzzy sets, and an Archimedean power partitioned Muirhead mean operator of qROFNs and its weighted form are presented and a MCGDM method based on the weighted operator is proposed in this paper. The generalised expressions of the two operators are firstly defined. Their properties are explored and proved and their specific expressions are constructed. On the basis of the specific expressions, a method for solving the MCGDM problems based on qROFNs is then designed. Finally, the feasibility and effectiveness of the method is demonstrated via a numerical example, a set of experiments, and qualitative and quantitative comparisons.
Project description:Recommender systems (RSs), which underwent rapid development and had an enormous impact on e-commerce, have the potential to become useful tools for drug discovery. In this paper, we applied RS methods for the prediction of the antiviral activity class (active/inactive) for compounds extracted from ChEMBL. Two main RS approaches were applied: collaborative filtering (Surprise implementation) and content-based filtering (sparse-group inductive matrix completion (SGIMC) method). The effectiveness of RS approaches was investigated for prediction of antiviral activity classes ("interactions") for compounds and viruses, for which some of their interactions with other viruses or compounds are known, and for prediction of interaction profiles for new compounds. Both approaches achieved relatively good prediction quality for binary classification of individual interactions and compound profiles, as quantified by cross-validation and external validation receiver operating characteristic (ROC) score >0.9. Thus, even simple recommender systems may serve as an effective tool in antiviral drug discovery.
Project description:This research conducts an audit of Twitter's recommender system, aiming to examine the disparities between users' curated timelines and their subscription choices. Through the combined use of a browser extension and data collection via the Twitter API, our investigation reveals a high amplification of friends from the same community, a preference for amplifying emotionally charged and toxic tweets and an uneven algorithmic amplification across friends' political leaning. This audit emphasizes the importance of transparency, and increased awareness regarding the impact of algorithmic curation.
Project description:Model selection is a chronic issue in computational science. The conventional approach relies heavily on human experience. However, gaining experience takes years and is severely inefficient. To address this issue, we distill human experience into a recommender system. A trained recommender system tells whether a computational model does well or poorly in handling a physical process. It also tells if a physical process is important for a quantity of interest. By accumulating this knowledge, the system is able to make recommendations about computational models. We showcase the power of the system by considering Reynolds-averaged-Navier-Stokes (RANS) model selection in the field of computational fluid dynamics (CFD). Since turbulence is stochastic, there is no universal RANS model, and RANS model selection has always been an issue. A working model recommending system saves fluid engineers years and allows junior CFD practitioners to make sensible model choices like senior ones.
Project description:Machine learning methods, particularly neural networks trained on large datasets, are transforming how scientists approach scientific discovery and experimental design. However, current state-of-the-art neural networks are limited by their uninterpretability: Despite their excellent accuracy, they cannot describe how they arrived at their predictions. Here, using an "interpretable-by-design" approach, we present a neural network model that provides insights into RNA splicing, a fundamental process in the transfer of genomic information into functional biochemical products. Although we designed our model to emphasize interpretability, its predictive accuracy is on par with state-of-the-art models. To demonstrate the model's interpretability, we introduce a visualization that, for any given exon, allows us to trace and quantify the entire decision process from input sequence to output splicing prediction. Importantly, the model revealed uncharacterized components of the splicing logic, which we experimentally validated. This study highlights how interpretable machine learning can advance scientific discovery.
Project description:As one of the major challenges, cold-start problem plagues nearly all recommender systems. In particular, new items will be overlooked, impeding the development of new products online. Given limited resources, how to utilize the knowledge of recommender systems and design efficient marketing strategy for new items is extremely important. In this paper, we convert this ticklish issue into a clear mathematical problem based on a bipartite network representation. Under the most widely used algorithm in real e-commerce recommender systems, the so-called item-based collaborative filtering, we show that to simply push new items to active users is not a good strategy. Interestingly, experiments on real recommender systems indicate that to connect new items with some less active users will statistically yield better performance, namely, these new items will have more chance to appear in other users' recommendation lists. Further analysis suggests that the disassortative nature of recommender systems contributes to such observation. In a word, getting in-depth understanding on recommender systems could pave the way for the owners to popularize their cold-start products with low costs.