Unknown

Dataset Information

0

Classifying Retinal Degeneration in Histological Sections Using Deep Learning.


ABSTRACT:

Purpose

Artificial intelligence (AI) techniques are increasingly being used to classify retinal diseases. In this study we investigated the ability of a convolutional neural network (CNN) in categorizing histological images into different classes of retinal degeneration.

Methods

Images were obtained from a chemically induced feline model of monocular retinal dystrophy and split into training and testing sets. The training set was graded for the level of retinal degeneration and used to train various CNN architectures. The testing set was evaluated through the best architecture and graded by six observers. Comparisons between model and observer classifications, and interobserver variability were measured. Finally, the effects of using less training images or images containing half the presentable context were investigated.

Results

The best model gave weighted-F1 scores in the range 85% to 90%. Cohen kappa scores reached up to 0.86, indicating high agreement between the model and observers. Interobserver variability was consistent with the model-observer variability in the model's ability to match predictions with the observers. Image context restriction resulted in model performance reduction by up to 6% and at least one training set size resulted in a model performance reduction of 10% compared to the original size.

Conclusions

Detecting the presence and severity of up to three classes of retinal degeneration in histological data can be reliably achieved with a deep learning classifier.

Translational relevance

This work lays the foundations for future AI models which could aid in the evaluation of more intricate changes occurring in retinal degeneration, particularly in other types of clinically derived image data.

SUBMITTER: Al Mouiee D 

PROVIDER: S-EPMC8196406 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10687181 | biostudies-literature
| S-EPMC10407270 | biostudies-literature
| S-EPMC8418980 | biostudies-literature
| S-EPMC7347231 | biostudies-literature
| S-EPMC10967210 | biostudies-literature
| S-EPMC7788977 | biostudies-literature
| S-EPMC8899862 | biostudies-literature
| S-EPMC9568999 | biostudies-literature
| S-EPMC7941989 | biostudies-literature
| S-EPMC8119673 | biostudies-literature