Unknown

Dataset Information

0

De novo biosynthesis of C-arabinosylated flavones by utilization of indica rice C-glycosyltransferases.


ABSTRACT: Flavone C-arabinosides/xylosides are plant-originated glycoconjugates with various bioactivities. However, the potential utility of these molecules is hindered by their low abundance in nature. Engineering biosynthesis pathway in heterologous bacterial chassis provides a sustainable source of these C-glycosides. We previously reported bifunctional C-glucosyl/C-arabinosyltransferases in Oryza sativa japonica and O. sativa indica, which influence the C-glycoside spectrum in different rice varieties. In this study, we proved the C-arabinosyl-transferring activity of rice C-glycosyltransferases (CGTs) on the mono-C-glucoside substrate nothofagin, followed by taking advantage of specific CGTs and introducing heterologous UDP-pentose supply, to realize the production of eight different C-arabinosides/xylosides in recombinant E. coli. Fed-batch fermentation and precursor supplement maximized the titer of rice-originated C-arabinosides to 20-110 mg/L in an E. coli chassis. The optimized final titer of schaftoside and apigenin di-C-arabinoside reached 19.87 and 113.16 mg/L, respectively. We demonstrate here the success of de novo bio-production of C-arabinosylated and C-xylosylated flavones by heterologous pathway reconstitution. These results lay a foundation for further optimal manufacture of complex flavonoid compounds in microbial cell factories.

Supplementary information

The online version contains supplementary material available at 10.1186/s40643-021-00404-3.

SUBMITTER: Chen Z 

PROVIDER: S-EPMC8196924 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5418594 | biostudies-literature
| S-EPMC10516980 | biostudies-literature
| S-EPMC7202035 | biostudies-literature
| S-EPMC7869020 | biostudies-literature
| S-EPMC3738970 | biostudies-literature
2023-08-20 | GSE218565 | GEO
| S-EPMC10784492 | biostudies-literature
| S-EPMC4268812 | biostudies-literature
| S-EPMC1152552 | biostudies-other
| S-EPMC6001691 | biostudies-literature