Unknown

Dataset Information

0

Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins.


ABSTRACT: We present improvements to the hydropathy scale (HPS) coarse-grained (CG) model for simulating sequence-specific behavior of intrinsically disordered proteins (IDPs), including their liquid-liquid phase separation (LLPS). The previous model based on an atomistic hydropathy scale by Kapcha and Rossky (KR scale) is not able to capture some well-known LLPS trends such as reduced phase separation propensity upon mutations (R-to-K and Y-to-F). Here, we propose to use the Urry hydropathy scale instead, which was derived from the inverse temperature transitions in a model polypeptide with guest residues X. We introduce two free parameters to shift (Δ) and scale (µ) the overall interaction strengths for the new model (HPS-Urry) and use the experimental radius of gyration for a diverse group of IDPs to find their optimal values. Interestingly, many possible (Δ, µ) combinations can be used for typical IDPs, but the phase behavior of a low-complexity (LC) sequence FUS is only well described by one of these models, which highlights the need for a careful validation strategy based on multiple proteins. The CG HPS-Urry model should enable accurate simulations of protein LLPS and provide a microscopically detailed view of molecular interactions.

SUBMITTER: Regy RM 

PROVIDER: S-EPMC8197430 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6713210 | biostudies-literature
| S-EPMC10165611 | biostudies-literature
| S-EPMC7612994 | biostudies-literature
| S-EPMC5798848 | biostudies-literature
| S-EPMC7682375 | biostudies-literature
| S-EPMC10245785 | biostudies-literature
| S-EPMC9313257 | biostudies-literature
| S-EPMC6535772 | biostudies-literature
| S-EPMC5312841 | biostudies-literature
| S-EPMC7379843 | biostudies-literature