Viscoelastic Relaxation of Polymerized Ionic Liquid and Lithium Salt Mixtures: Effect of Salt Concentration.
Ontology highlight
ABSTRACT: Polymerized ionic liquids (PILs) doped with lithium salts have recently attracted research interests as the polymer component in lithium-ion batteries because of their high ionic mobilities and lithium-ion transference numbers. To date, although the ion transport mechanism in lithium-doped PILs has been considerably studied, the role of lithium salts on the dynamics of PIL chains remains poorly understood. Herein, we examine the thermal and rheological behaviors of the mixture of poly(1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide (PC4-TFSI)/lithium TFSI (LiTFSI) in order to clarify the effect of the addition of LiTFSI. We show that the glass transition temperature Tg and the entanglement density decrease with the increase in LiTFSI concentration wLiTFSI. These results indicate that LiTFSI acts as a plasticizer for PC4-TFSI. Comparison of the frequency dependence of the complex modulus under the iso-frictional condition reveals that the addition of LiTFSI does not modify the stress relaxation mechanism of PC4-TFSI, including its characteristic time scale. This suggests that the doped LiTFSI, component that can be carrier ions, is not so firmly bound to the polymer chain as it modifies the chain dynamics. In addition, a broadening of the loss modulus spectrum in the glass region occurs at high wLiTFSI. This change in the spectrum can be caused by the responses of free TFSI and/or coordination complexes of Li and TFSI. Our detailed rheological analysis can extract the information of the dynamical features for PIL/salt mixtures and may provide helpful knowledge for the control of mechanical properties and ion mobilities in PILs.
SUBMITTER: Yokokoji A
PROVIDER: S-EPMC8199314 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA