Ontology highlight
ABSTRACT:
SUBMITTER: Chorba JS
PROVIDER: S-EPMC8200722 | biostudies-literature | 2021 May
REPOSITORIES: biostudies-literature
Chorba John S JS Shapiro Avi M AM Le Le L Maidens John J Prince John J Pham Steve S Kanzawa Mia M MM Barbosa Daniel N DN Currie Caroline C Brooks Catherine C White Brent E BE Huskin Anna A Paek Jason J Geocaris Jack J Elnathan Dinatu D Ronquillo Ria R Kim Roy R Alam Zenith H ZH Mahadevan Vaikom S VS Fuller Sophie G SG Stalker Grant W GW Bravo Sara A SA Jean Dina D Lee John J JJ Gjergjindreaj Medeona M Mihos Christos G CG Forman Steven T ST Venkatraman Subramaniam S McCarthy Patrick M PM Thomas James D JD
Journal of the American Heart Association 20210426 9
Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. ...[more]