Project description:Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.
Project description:Microbial communities of wetlands play key roles in the earth's ecology and stability. To elucidate the cold adaptation mechanisms of bacteria in plateau wetlands, we conducted comparative genomic analyses of Pseudomonas sivasensis and closely related lineages. The genome of P. sivasensis W-6, a cold-adapted bacterium isolated from the Napahai plateau wetland, was sequenced and analyzed. The genome length was 6,109,123 bp with a G+C content of 59.5%. Gene prediction yielded 5360 protein-coding sequences, 70 tRNAs, 24 gene islands, and 2 CRISPR sequences. The isolate contained evidence of horizontal gene transfer events during its evolution. Two prophages were predicted and indicated that W-6 was a lysogen. The cold adaptation of the W-6 strain showed psychrophilic rather than psychrotrophic characteristics. Cold-adapted bacterium W-6 can utilize glycogen and trehalose as resources, associated with carbohydrate-active enzymes, and survive in a low-temperature environment. In addition, the cold-adapted mechanisms of the W-6 included membrane fluidity by changing the unsaturated fatty acid profile, the two-component regulatory systems, anti-sense transcription, the role played by rpsU genes in the translation process, etc. The genome-wide analysis of W-6 provided a deeper understanding of cold-adapted strategies of bacteria in environments. We elucidated the adaptive mechanism of the psychrophilic W-6 strain for survival in a cold environment, which provided a basis for further study on host-phage coevolution.
Project description:Two lytic double-stranded DNA (dsDNA) bacteriophages, belonging to the family Herelleviridae, were isolated from wastewater in Western Australia. Biyabeda-mokiny 2 appears to belong to the genus Kayvirus, and Koomba-kaat 1 to Silviavirus.
Project description:Achromobacter spp. are becoming increasingly associated with lung infections in patients suffering from cystic fibrosis (CF). A. marplatensis, which is closely related to A. xylosoxidans, has been isolated from the lungs of CF patients and other human infections. This article describes the isolation, morphology and characterization of two lytic bacteriophages specific for an A. marplatensis strain isolated from a pneumonia patient. This host strain was the causal agent of hospital acquired pneumonia-the first clinical report of such an occurrence. Full genome sequencing revealed bacteriophage genomes ranging in size from 45901 to 46,328 bp. Transmission electron microscopy revealed that the two bacteriophages AMA1 and AMA2 belonged to the Siphoviridae family. Host range analysis showed that their host range did not extend to A. xylosoxidans. The possibility exists for future testing of such bacteriophages in the control of Achromobacter infections such as those seen in CF and other infections of the lungs. The incidence of antibiotic resistance in this genus highlights the importance of seeking adjuncts and alternatives in CF and other lung infections.
Project description:Bacteriophages could be a useful adjunct to antibiotics for the treatment of multidrug-resistant Pseudomonas aeruginosa infections. In this study, lytic P. aeruginosa myoviruses PsCh, PsIn, Ps25, and Ps12on-D were isolated from Tunisian sewage samples. Phage Ps12on-D displayed an adsorption time of ~10 min, a short latency period (~10 min), and a large burst size (~115 PFU per infected cell) under standard growth conditions. All phages were active at broad temperature (4 °C to 50 °C) and pH (3.0 to 11.0) ranges and were able to lyse a wide variety of P. aeruginosa strains isolated from clinical and environmental samples worldwide. Illumina sequencing revealed double-stranded DNA genomes ranging from 87,887 and 92,710 bp with high sequence identity to Pseudomonas phage PAK_P1. All four phages based on sequence analysis were assigned to the Pakpunavirus genus. The presented characterization and preclinical assessment are part of an effort to establish phage therapy treatment as an alternative strategy for the management of multidrug-resistant P. aeruginosa infections in Tunisia.
Project description:The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.
Project description:Biological nitrogen fixation is a key process in the nitrogen cycle and the main source of soil available nitrogen. The number and diversity of nitrogen-fixing bacteria directly reflect the efficiency of soil nitrogen fixation. The alpine wetland on the Qinghai-Tibet Plateau (QTP) is degrading increasingly, with a succession toward alpine meadows. Significant changes in soil physicochemical properties accompany this process. However, it is unclear how does the soil nitrogen-fixing bacteria change during the degradation processes, and what is the relationship between these changes and soil physicochemical properties. In this study, the nifH gene was used as a molecular marker to further investigate the diversity of nitrogen-fixing bacteria at different stages of degradation (none, light, and severe degeneration) in the alpine wetland. The results showed that wetland degradation significantly reduced the diversity, altered the community composition of nitrogen-fixing bacteria, decreased the relative abundance of Proteobacteria, and increased the relative abundance of Actinobacteria. In addition to the dominant phylum, the class, order, family, and genus of nitrogen-fixing bacteria had significant changes in relative abundance. Analysis of Mantel test showed that most soil factors (such as pH, soil water content (SWC), the organic carbon (TOC), total nitrogen (TN), and soil C:P ratio) and abundance had a significant positive correlation. TOC, TN, total phosphorus (TP), soil C:P ratio and Shannon had a significant positive correlation with each other. The RDA ranking further revealed that TOC, SWC, and TN were the main environmental factors influencing the community composition of nitrogen-fixing bacteria. It is found that the degradation of the alpine wetland inhibited the growth of nitrogen-fixing bacteria to a certain extent, leading to the decline of their nitrogen-fixing function.
Project description:We here describe two novel lytic phages, KT28 and KTN6, infecting Pseudomonas aeruginosa, isolated from a sewage sample from an irrigated field near Wroclaw, in Poland. Both viruses show characteristic features of Pbunalikevirus genus within the Myoviridae family with respect to shape and size of head/tail, as well as LPS host receptor recognition. Genome analysis confirmed the similarity to other PB1-related phages, ranging between 48 and 96%. Pseudomonas phage KT28 has a genome size of 66,381 bp and KTN6 of 65,994 bp. The latent period, burst size, stability and host range was determined for both viruses under standard laboratory conditions. Biofilm eradication efficacy was tested on peg-lid plate assay and PET membrane surface. Significant reduction of colony forming units was observed (70-90%) in 24 h to 72 h old Pseudomonas aeruginosa PAO1 biofilm cultures for both phages. Furthermore, a pyocyanin and pyoverdin reduction tests reveal that tested phages lowers the amount of both secreted dyes in 48-72 h old biofilms. Diffusion and goniometry experiments revealed the increase of diffusion rate through the biofilm matrix after phage application. These characteristics indicate these phages could be used to prevent Pseudomonas aeruginosa infections and biofilm formation. It was also shown, that PB1-related phage treatment of biofilm caused the emergence of stable phage-resistant mutants growing as small colony variants.
Project description:The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.
Project description:We compared the community structures of cyanobacteria in four biological desert crusts from Utah's Colorado Plateau developing on different substrata. We analyzed natural samples, cultures, and cyanobacterial filaments or colonies retrieved by micromanipulation from field samples using microscopy, denaturing gradient gel electrophoresis, and sequencing of 16S rRNA genes. While microscopic analyses apparently underestimated the biodiversity of thin filamentous cyanobacteria, molecular analyses failed to retrieve signals for otherwise conspicuous heterocystous cyanobacteria with thick sheaths. The diversity found in desert crusts was underrepresented in currently available nucleotide sequence databases, and several novel phylogenetic clusters could be identified. Morphotypes fitting the description of Microcoleus vaginatus Gomont, dominant in most samples, corresponded to a tight phylogenetic cluster of probable cosmopolitan distribution, which was well differentiated from other cyanobacteria traditionally classified within the same genus. A new, diverse phylogenetic cluster, named "Xeronema," grouped a series of thin filamentous Phormidium-like cyanobacteria. These were also ubiquitous in our samples and probably correspond to various botanical Phormidium and Schizothrix spp., but they are phylogenetically distant from thin filamentous cyanobacteria from other environments. Significant differences in community structure were found among soil types, indicating that soil characteristics may select for specific cyanobacteria. Gypsum crusts were most deviant from the rest, while sandy, silt, and shale crusts were relatively more similar among themselves.