Project description:Enterovirus 71 (EV 71) is a causative agent of mild Hand Foot and Mouth Disease but is capable of causing severe complications in the CNS in young children. Reverse genetics technology is currently widely used to study the pathogenesis of the virus. The aim of this work was to determine and evaluate the factors which can contribute to infectivity of EV 71 RNA transcripts in vitro. Two strategies, overlapping RT-PCR and long distance RT-PCR, were employed to obtain the full-length genome cDNA clones of the virus. The length of the poly(A) tail and the presence of non-viral 3'-terminal sequences were studied in regard to their effects on infectivity of the in vitro RNA transcripts of EV 71 in cell culture. The data revealed that only cDNA clones obtained after long distance RT-PCR were infectious. No differences were observed in virus titres after transfection with in vitro RNA harbouring a poly(A) tail of 18 or 30 adenines in length, irrespective of the non-viral sequences at the 3'-terminus.
Project description:Enterovirus 71 (EV71) is a major pathogen that causes hand, foot and mouth disease (HFMD), which is a life threatening disease in certain children. The pathogenesis of EV71-caused HFMD is poorly defined due to the lack of simple and robust animal models with severe phenotypes that recapitulate symptoms observed in humans. Here, we generated the infectious clone of a clinical isolate from a severe HFMD patient. Virus rescued from the cDNA clone was infectious in cell lines. When administrated intraperitoneally to neonatal ICR, BALB/c and C57 immune competent mice at a dosage of1.4 × 104 pfu per mouse, the virus caused weight loss, paralysis and death in the infected mice after 4-5 days of infection. In the infected mice, detectable viral replication was detected in various tissues such as heart, liver, brain, lung, kidney, small intestine, leg skeletal muscle and medulla oblongata. The histology of the infected mice included massive myolysis, glomerular atrophy, villous blunting in small intestine, widened alveolar septum, diminished alveolar spaces and lymphocytes infiltration into the lung. By using the UV-inactivated virus as a control, we elucidated that the virus first amplified in the leg skeletal muscle tissue and the muscle tissue served as a primary viral replication site. In summary, we generated a stable EV71 infectious clone that is capable of infecting neonatal immune competent mice without adaptive mutations and provide a simple, valuable animal model for the studies of EV71pathogenesis and therapy.
Project description:It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied. Silencing specific ERK did not significantly impact on the EV71-caused biphasic activation of the other ERK isoform, suggesting the EV71-induced activations of ERK1 and ERK2 were non-discriminative and independent to one another. Knockdown of either ERK1 or ERK2 markedly impaired progeny EV71 propagation (both by more than 90%), progeny viral RNA amplification (either by about 30% to 40%) and protein synthesis (both by around 70%), indicating both ERK1 and ERK2 were critical and not interchangeable to EV71 propagation. Moreover, suppression of EV71 replication by inhibiting both early and late phases of ERK1/2 activation showed no significant difference from that of only blocking the late phase, supporting the late phase activation was more importantly responsible for EV71 life cycle. Taken together, this study for the first time identified both ERK1 and ERK2 were required for EV71 efficient replication and further verified the important role of MEK1-ERK1/2 in EV71 replication.
Project description:Hand, foot and mouth disease (HFMD), caused by enterovirus 71 (EV71), presents mild to severe disease, and sometimes fatal neurological and respiratory manifestations. However, reasons for the severe pathogenesis remain undefined. To investigate this, infection and viral kinetics of EV71 isolates from clinical disease (mild, moderate and severe) from Sarawak, Malaysia, were characterized in human rhabdomyosarcoma (RD), neuroblastoma (SH-SY5Y) and peripheral blood mononuclear cells (PBMCs). High resolution transcriptomics was used to decipher EV71-host interactions in PBMCs. Ingenuity analyses revealed similar pathways triggered by all EV71 isolates, although the extent of activation varied. Importantly, several pathways were found to be specific to the severe isolate, including triggering receptor expressed on myeloid cells 1 (TREM-1) signaling. Depletion of TREM-1 in EV71-infected PBMCs with peptide LP17 resulted in decreased levels of pro-inflammatory genes, and reduced viral loads for the moderate and severe isolates. Mechanistically, this is the first report describing the transcriptome profiles during EV71 infections in primary human cells, and the involvement of TREM-1 in the severe disease pathogenesis, thus providing new insights for future treatment targets.
Project description:Currently, HIV-1 CRF63_02A6 is the prevalent genetic variant of the HIV-infected subjects in the major part of the Siberian Federal District (Russia). The HIV-1 CRF63_02A6 R5-tropic pT11.17 and X4-tropic pMtBs.18 infectious molecular clones (IMCs) were constructed using the virus isolates recovered in 2015 and 2017 of male HIV-infected Russian residents (from Tomsk and Novosibirsk, respectively). Near full-length proviral HIV-1 sequences (9,644 and 9,748?bp) were subcloned in pBluescript II KS(-). The CRF63_02A6 IMC virions were obtained by transfecting HEK293T cells with the constructed plasmids and demonstrated a stable growth in peripheral blood mononuclear cell culture (p24 concentration increased >1,000-fold and the virus protein accumulation in culture liquid exceeded 100,000?pg/mL). The tropism of CRF63_02A6 IMCs was determined genotypically (using Geno2pheno) and phenotypically by cultivating the IMC virions in MT-2, U87-CD4-CCR5, and U87-CD4-CXCR4 cell cultures. The obtained HIV-1 CRF63_02A6 IMCs may be useful in basic and applied research.
Project description:Enterovirus 71 (EV71) is one of the major causative agents for hand, foot and mouth disease (HFMD) in children. Although there are three inactivated virus-based HFMD vaccines licensed in China, alternative approaches have been taken to produce an effective and safer vaccine that is easier to manufacture in large scale. Among these, a virus-like particles (VLPs) based EV71 vaccine is under active development. For this purpose, an efficient methodology for the production of EV71-VLPs by recombinant technology is needed. We here report the construction and expression of the P1 and 3C genes of EV71 in Pichia pastoris for producing VLP-based EV71 vaccine antigen with a high yield and simple manufacturing process. Based on codon-optimized P1 and 3C genes, EV71-VLPs were efficiently expressed in Pichia pastoris system, and the expression level reached 270 mg/L. Biochemical and biophysical analyses showed that the produced EV71-VLPs consisted of processed VP0, VP1, and VP3 present as ~35nm spherical particles. The immune response as a function of EV71-VLPs and adjuvant dose ratio was investigated for vaccine development. Immunization with EV71-VLPs of 1-5 µg/dose and adjuvant of 225 µg/dose induced robust neutralizing antibody responses in mice and provided effective protection against lethal challenge in both maternally transferred antibody and passive transfer protection mouse models. Therefore, the yeast produced EV71-VLPs antigen is a promising candidate for the development of a vaccine against HFMD.
Project description:Reverse genetics systems represent an important tool for studying the molecular and functional processes of viral infection. Citrus leprosis virus C (CiLV-C) (genus Cilevirus, family Kitaviridae) is the main pathogen responsible for the citrus leprosis (CL) disease in Latin America, one of the most economically important diseases of the citrus industry. Molecular studies of this pathosystem are limited due to the lack of infectious clones. Here, we report the construction and validation of a CiLV-C infectious cDNA clone based on an agroinfection system. The two viral RNA segments (RNA1 and RNA2) were assembled into two binary vectors (pJL89 and pLXAS). Agroinfiltrated Nicotiana benthamiana plants showed a response similar to that observed in the natural infection process with the formation of localized lesions restricted to the inoculated leaves. The virus recovered from the plant tissue infected with the infectious clones can be mechanically transmitted between N. benthamiana plants. Detection of CiLV-C subgenomic RNAs (sgRNAs) from agroinfiltrated and mechanically inoculated leaves further confirmed the infectivity of the clones. Finally, partial particle-purification preparations or sections of CiLV-C-infected tissue followed by transmission electron microscopy (TEM) analysis showed the formation of CiLV-C virions rescued by the infectious clone. The CiLV-C reverse genetic system now provides a powerful molecular tool to unravel the peculiarities of the CL pathosystem.
Project description:Hand-foot-and-mouth disease (HFMD) remains a major health concern in the Asia-Pacific regions, and its major causative agents include human enterovirus 71 (EV71) and coxsackievirus A16. A desirable vaccine against HFMD would be multivalent and able to elicit protective responses against multiple HFMD causative agents. Previously, we have demonstrated that a thermostable recombinant EV71 vaccine candidate can be produced by the insertion of a foreign peptide into the BC loop of VP1 without affecting viral replication. Here we present crystal structures of two different naturally occurring empty particles, one from a clinical C4 strain EV71 and the other from its recombinant virus containing an insertion in the VP1 BC loop. Crystal structure analysis demonstrated that the inserted foreign peptide is well exposed on the particle surface without significant structural changes in the capsid. Importantly, such insertions do not seem to affect the virus uncoating process as illustrated by the conformational similarity between an uncoating intermediate of another recombinant virus and that of EV71. Especially, at least 18 residues from the N terminus of VP1 are transiently externalized. Altogether, our study provides insights into vaccine development against HFMD.
Project description:Rhinoviruses (RVs) are major causes of the common cold and are related to severe respiratory tract diseases, leading to a considerable economic burden and impacts on public health. Available and stable viral resources of rhinoviruses for laboratory use are important for promoting studies on rhinoviruses and further vaccine or therapeutic drug development. Reverse genetic technology can be useful to produce rhinoviruses and will help to promote studies on their pathogenesis and virulence. In this study, rhinovirus A89, an RV-A species that has been found to be highly involved in hospitalization triggered by RV infections, was selected to construct an infectious clone based on its sequence as a representative. The viral mRNA produced by a T7 RNA transcript system was transfected into H1-HeLa cells, and the rescued RV-A89 viruses were harvested and confirmed by sequencing. The rescued RV-A89 induced a similar cytopathic effect (CPE) and shared almost identical growth kinetics curves with parental RV-A89. Moreover, 9A7, a prescreened monoclonal antibody against the parental RV-A89, had a good and specific reaction with the rescued RV-A89, and further characterization showed almost the same morphology and protein composition of both viruses; thus, recombinant RV-A89 with similar biological characterization and virulence to the parental virus was obtained. In summary, the infectious clone of RV-A89 was successfully established, and the development of reverse genetic technology for rhinovirus will provide a framework for further studies on rhinoviruses.
Project description:Enterovirus 71 (EV71) is a neurotropic pathogen that has been consistently associated with the severe neurological forms of hand, foot, and mouth disease. The lack of a relevant animal model has hampered our understanding of EV71 pathogenesis, in particular the route and mode of viral dissemination. It has also hindered the development of effective prophylactic and therapeutic approaches, making EV71 one of the most pressing public health concerns in Southeast Asia. Here we report a novel mouse model of EV71 infection. We demonstrate that 2-week-old and younger immunodeficient AG129 mice, which lack type I and II interferon receptors, are susceptible to infection with a non-mouse-adapted EV71 strain via both the intraperitoneal (i.p.) and oral routes of inoculation. The infected mice displayed progressive limb paralysis prior to death. The dissemination of the virus was dependent on the route of inoculation but eventually resulted in virus accumulation in the central nervous systems of both animal groups, indicating a clear neurotropism of the virus. Histopathological examination revealed massive damage in the limb muscles, brainstem, and anterior horn areas. However, the minute amount of infectious viral particles in the limbs from orally infected animals argues against a direct viral cytopathic effect in this tissue and suggests that limb paralysis is a consequence of EV71 neuroinvasion. Together, our observations support that young AG129 mice display polio-like neuropathogenesis upon infection with a non-mouse-adapted EV71 strain, making this mouse model relevant for EV71 pathogenesis studies and an attractive platform for EV71 vaccine and drug testing.