Project description:In this study a gene expression (i.e., RNAseq) analysis was performed in HEK293T-ACE2 cellular model upon infection with viral particle belonging to VOC Delta (MOI: 0.026) for 24 hours in order to have a global picture of the transcriptome landscape in response to early phase of infection of SARS-CoV-2 ( VOC Delta infection and to evaluate the role of Ca2+ in HEK293-ACE2 cellular model and transfer to homeostasis in SARS-COV-2 patients (by Pasqualino de Antonellis1-2* and Veronica Ferrucci 1-2* (first authors) et al. and Massimo Zollo1-2# (corresponding author). Manuscript in preparation 2022 July 15th 2022. Short title "ATP2B1 (PMCA1), regulated by FOXO3, influences susceptibility to severe COVID19".
Project description:ObjectiveStarting 31 July 2021, a SARS-CoV-2 outbreak occurred in Yantai, Shandong Province. The investigation showed that this outbreak was closely related to the epidemic at Nanjing Lukou Airport. In view of the fact that there were many people involved in this outbreak and these people had a complex activity area, the transmission route cannot be analyzed by simple epidemiological investigation. Here we combined the SARS-COV-2 whole-genome sequencing with epidemiology to determine the epidemic transmission route of Yantai.MethodsThirteen samples of SARS-CoV-2 outbreak cases from 31 July to 4 August 2021 were collected and identified by fluorescence quantitative PCR, then whole-genome deep sequencing based on NGS was performed, and the data were analyzed and processed by biological software.ResultsAll sequences were over 29,000 bases in length and all belonged to B.1.617.2, which was the Delta strain. All sequences shared two amino acid deletions and 9 amino acid mutations in Spike protein compared with reference sequence NC_045512.2 (Wuhan virus strain). Compared with the sequence of Lukou Airport Delta strain, the homology was 99.99%. In order to confirm the transmission relationship between patients, we performed a phylogenetic tree analysis. The results showed that patient 1, patient 2, and patient 9 belong to an independent branch, and other patients have a close relationship. Combined with the epidemiological investigation, we speculated that the epidemic of Yantai was transmitted by two routes at the same time. Based on this information, our prevention and control work was carried out in two ways and effectively prevented the further spread of this epidemic.
Project description:BackgroundA novel variant of SARS-CoV-2, the Delta variant of concern (VOC, also known as lineage B.1.617.2), is fast becoming the dominant strain globally. We reported the epidemiological, viral, and clinical characteristics of hospitalized patients infected with the Delta VOC during the local outbreak in Guangzhou, China.MethodsWe extracted the epidemiological and clinical information pertaining to the 159 cases infected with the Delta VOC across seven transmission generations between May 21 and June 18, 2021. The whole chain of the Delta VOC transmission was described. Kinetics of viral load and clinical characteristics were compared with a cohort of wild-type infection in 2020 admitted to the Guangzhou Eighth People's Hospital.FindingsThere were four transmission generations within the first ten days. The Delta VOC yielded a significantly shorter incubation period (4.0 vs. 6.0 days), higher viral load (20.6 vs. 34.0, cycle threshold of the ORF1a/b gene), and a longer duration of viral shedding in pharyngeal swab samples (14.0 vs. 8.0 days) compared with the wild-type strain. In cases with critical illness, the proportion of patients over the age of 60 was higher in the Delta VOC group than in the wild-type strain (100.0% vs. 69.2%, p = 0.03). The Delta VOC had a higher risk than wild-type infection in deterioration to critical status (hazards ratio 2.98 [95%CI 1.29-6.86]; p = 0.01).InterpretationInfection with the Delta VOC is characterized by markedly increased transmissibility, viral loads and risk of disease progression compared with the wild-type strain, calling for more intensive prevention and control measures to contain future outbreaks.FundingNational Grand Program, National Natural Science Foundation of China, Guangdong Provincial Department of Science and Technology, Guangzhou Laboratory.
Project description:There is widespread concern about the clinical effectiveness of current vaccines in preventing Covid-19 caused by SARS-CoV-2 Variants of Concern (Williams in Lancet Respir Med 29:333-335, 2021; Hayawi in Vaccines 9:1305, 2021), including those identified at present (Alpha, Beta, Gamma, Delta, Omicron) and possibly new ones arising in the future. It would be valuable to be able to predict vaccine effectiveness for any variant. Here we offer such an estimate of predicted vaccine effectiveness for any SARS-CoV-2 variant based on the amount of overlap of in silico high binding affinity of the variant and Wildtype spike glycoproteins to a pool of frequent Human Leukocyte Antigen Class II molecules which are necessary for initiating antibody production (Blum et al. in Annu Rev Immunol 31:443-473, 2013). The predictive model was strong (r = 0.910) and statistically significant (P = 0.013).
Project description:BackgroundThe results of a randomised trial showed the safety and efficacy of Gam-COVID-Vac against COVID-19. However, compared to other vaccines used across the globe, the real-world data on the effectiveness of Gam-COVID-Vac, especially against the disease caused by the Delta variant of concern, was limited. We aimed to assess the effectiveness of vaccination mainly conducted with Gam-COVID-Vac in St. Petersburg, Russia.MethodsWe designed a case-control study to assess the vaccine effectiveness (VE) against referral to hospital. Self-reported vaccination status was collected for individuals with confirmed SARS-CoV-2 infection who were referred for initial low-dose computed tomography (LDCT) triage in two outpatient centres in July 3-August 9, 2021, in St. Petersburg, Russia. We used logistic regression models to estimate the adjusted (for age, sex, and triage centre) VE for complete (14 days or more after the second dose) vaccination. We estimated the VE against referral for hospital admission, COVID-19-related lung injury assessed with LDCT, and decline in oxygen saturation.ResultsIn the final analysis, 13,893 patients were included, 1291 (9.3%) patients met our criteria for complete vaccination status, and 495 (3.6%) were referred to hospital. In the primary analysis, the adjusted VE against referral to hospital was 81% (95% confidence interval: 68-88) for complete vaccination. The VE against referral to hospital was more pronounced in women (84%, 95% CI: 66-92) compared to men (76%, 95% CI: 51-88). Vaccine protective effect increased with increasing lung injury categories, from 54% (95% CI: 48-60) against any sign of lung injury to 76% (95% CI: 59-86) against more than 50% lung involvement. A sharp increase was observed in the probability of hospital admission with age for non-vaccinated patients in relation to an almost flat relationship for the completely vaccinated group.ConclusionsCOVID-19 vaccination was effective against referral to hospital in patients with symptomatic SARS-CoV-2 infection in St. Petersburg, Russia. This protection is probably mediated through VE against lung injury associated with COVID-19.
Project description:Although high vaccine effectiveness of messenger RNA (mRNA) coronavirus disease 2019 (COVID-19) vaccines was reported in studies in several countries, data is limited from Asian countries, especially against the Delta (B.1.617.2) variant. We conducted a multicenter test-negative case-control study in patients aged 16 visiting hospitals or clinics with signs or symptoms consistent with COVID-19 from July 1 to September 30, 2021, when the Delta variant was dominant (90% of severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infections) nationwide in Japan. Vaccine effectiveness of BNT162b2 or mRNA-1273 against symptomatic SARS-CoV-2 infections was evaluated. Waning immunity among patients aged 16 to 64 was also assessed. We enrolled 1936 patients, including 396 test-positive cases and 1540 test-negative controls for SARS-CoV-2. The median age was 49 years, 53.4% were male, and 34.0% had underlying medical conditions. Full vaccination (receiving two doses 14 days before symptom onset) was received by 6.6% of cases and 38.8% of controls. Vaccine effectiveness of full vaccination against symptomatic SARS-CoV-2 infections was 88.7% (95% confidence interval [CI], 78.8-93.9) among patients aged 16 to 64 and 90.3% (95% CI, 73.6-96.4) among patients aged 65. Among patients aged 16 to 64, vaccine effectiveness within one to three months after full vaccination was 91.8% (95% CI, 80.3-96.6), and was 86.4% (95% CI, 56.9-95.7) within four to six months. mRNA COVID-19 vaccines had high effectiveness against symptomatic SARS-CoV-2 infections in Japan during July 1 to September 30, 2021, when the Delta variant was dominant nationwide.