MicroRNA-1246-containing extracellular vesicles from acute myeloid leukemia cells promote the survival of leukemia stem cells via the LRIG1-meditated STAT3 pathway.
Ontology highlight
ABSTRACT: Cancer cells-secreted extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in local and distant microenvironment. Our initial GEO database analysis identified the presence of differentially-expressed microRNA-1246 (miR-1246) in acute myeloid leukemia (AML) cell-derived EVs. Consequently, the current study set out to investigate the role of AML-derived EVs-packaged miR-1246 in leukemia stem cells (LSCs) bioactivities. The predicted binding between miR-1246 and LRIG1 was verified using dual luciferase reporter assay. Then, gain- and loss-of-function assays were performed in LSCs, where LSCs were co-cultured with AML cell-derived EVs to characterize the effects of miR-1246-containing EVs, miR-1246, LRIG1 and STAT3 pathway in LSCs. Our findings revealed, in AML cell-derived EVs, miR-1246 was highly-expressed and directly-targeted LRIG1 to activate the STAT3 pathway. MiR-1246 inhibitor or EV-encapsulated miR-1246 inhibitor was found to suppress the viability and colony formation abilities but promoted the apoptosis and differentiation of LSCs through inactivation of STAT3 pathway by up-regulating LRIG1. In addition, the inhibitory effects of AML cell-derived EVs carrying miR-1246 inhibitor on LSCs were substantiated by in vivo experiments. Collectively, our findings reveal that the repression of AML cell-derived EVs containing miR-1246 inhibitor alters the survival of LSCs by inactivating the LRIG1-mediated STAT3 pathway.
SUBMITTER: Chen L
PROVIDER: S-EPMC8202884 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA