Unknown

Dataset Information

0

Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2).


ABSTRACT: The restrained electrostatic potential (RESP) approach is a highly regarded and widely used method of assigning partial charges to molecules for simulations. RESP uses a quantum-mechanical method that yields fortuitous overpolarization and thereby accounts only approximately for self-polarization of molecules in the condensed phase. Here we present RESP2, a next generation of this approach, where the polarity of the charges is tuned by a parameter, δ, which scales the contributions from gas- and aqueous-phase calculations. When the complete non-bonded force field model, including Lennard-Jones parameters, is optimized to liquid properties, improved accuracy is achieved, even with this reduced set of five Lennard-Jones types. We argue that RESP2 with δ≈0.6 (60% aqueous, 40% gas-phase charges) is an accurate and robust method of generating partial charges, and that a small set of Lennard-Jones types is good starting point for a systematic re-optimization of this important non-bonded term.

SUBMITTER: Schauperl M 

PROVIDER: S-EPMC8204736 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3528813 | biostudies-literature
| S-EPMC6817392 | biostudies-literature
| S-EPMC4050271 | biostudies-literature
| S-EPMC4570253 | biostudies-literature
| S-EPMC6108925 | biostudies-literature
| S-EPMC2736615 | biostudies-literature
| S-EPMC8037826 | biostudies-literature
| S-EPMC5606194 | biostudies-literature
| S-EPMC5441424 | biostudies-literature
| S-EPMC4971546 | biostudies-literature