Low-frequency vibrational modes in G-quadruplexes reveal the mechanical properties of nucleic acids.
Ontology highlight
ABSTRACT: Low-frequency vibrations play an essential role in biomolecular processes involving DNA such as gene expression, charge transfer, drug intercalation, and DNA-protein recognition. However, understanding the vibrational basis of these mechanisms relies on theoretical models due to the lack of experimental evidence. Here we present the low-frequency vibrational spectra of G-quadruplexes (structures formed by four strands of DNA) and B-DNA characterized using femtosecond optical Kerr-effect spectroscopy. Contrary to expectation, we found that G-quadruplexes show several strongly underdamped delocalized phonon-like modes that have the potential to contribute to the biology of the DNA at the atomic level. In addition, G-quadruplexes present modes at a higher frequency than B-DNA demonstrating that changes in the stiffness of the molecule alter its gigahertz to terahertz vibrational profile.
SUBMITTER: Gonzalez-Jimenez M
PROVIDER: S-EPMC8207511 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA