Unknown

Dataset Information

0

Wavy graphene sheets from electrochemical sewing of corannulene.


ABSTRACT: The presence of non-hexagonal rings in the honeycomb carbon arrangement of graphene produces rippled graphene layers with valuable chemical and physical properties. In principle, a bottom-up approach to introducing distortion from planarity of a graphene sheet can be achieved by careful insertion of curved polyaromatic hydrocarbons during the growth of the lattice. Corannulene, the archetype of such non-planar polyaromatic hydrocarbons, can act as an ideal wrinkling motif in 2D carbon nanostructures. Herein we report an electrochemical bottom-up method to obtain egg-box shaped nanographene structures through a polycondensation of corannulene that produces a new conducting layered material. Characterization of this new polymeric material by electrochemistry, spectroscopy, electron microscopy (SEM and TEM), scanning probe microscopy, and laser desorption-ionization time of flight mass spectrometry provides strong evidence that the anodic polymerization of corannulene, combined with electrochemically induced oxidative cyclodehydrogenations (Scholl reactions), leads to polycorannulene with a wavy graphene-like structure.

SUBMITTER: Bruno C 

PROVIDER: S-EPMC8208314 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6973065 | biostudies-literature
| S-EPMC6645570 | biostudies-literature
| S-EPMC7424566 | biostudies-literature
| S-EPMC4906393 | biostudies-literature
| S-EPMC6419049 | biostudies-literature
| S-EPMC4785365 | biostudies-literature
| S-EPMC2893836 | biostudies-literature
| S-EPMC7190721 | biostudies-literature
| S-EPMC5579263 | biostudies-literature
| S-EPMC4919633 | biostudies-literature