Supramolecular engineering of charge transfer in wide bandgap organic semiconductors with enhanced visible-to-NIR photoresponse.
Ontology highlight
ABSTRACT: Organic photodetectors displaying efficient photoelectric response in the near-infrared are typically based on narrow bandgap active materials. Unfortunately, the latter require complex molecular design to ensure sufficient light absorption in the near-infrared region. Here, we show a method combining an unconventional device architecture and ad-hoc supramolecular self-assembly to trigger the emergence of opto-electronic properties yielding to remarkably high near-infrared response using a wide bandgap material as active component. Our optimized vertical phototransistors comprising a network of supramolecular nanowires of N,N'-dioctyl-3,4,9,10-perylenedicarboximide sandwiched between a monolayer graphene bottom-contact and Au nanomesh scaffold top-electrode exhibit ultrasensitive light response to monochromatic light from visible to near-infrared range, with photoresponsivity of 2 × 105 A/W and 1 × 102 A/W, at 570 nm and 940 nm, respectively, hence outperforming devices based on narrow bandgap materials. Moreover, these devices also operate as highly sensitive photoplethysmography tool for health monitoring.
SUBMITTER: Yao Y
PROVIDER: S-EPMC8209149 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA