Ontology highlight
ABSTRACT: Introduction
We recently developed two noninvasive methodologies to help guide VT ablation: population-derived automated VT exit localization (PAVEL) and virtual-heart arrhythmia ablation targeting (VAAT). We hypothesized that while very different in their nature, limitations, and type of ablation targets (substrate-based vs. clinical VT), the image-based VAAT and the ECG-based PAVEL technologies would be spatially concordant in their predictions.Objective
The objective is to test this hypothesis in ischemic cardiomyopathy patients in a retrospective feasibility study.Methods
Four post-infarct patients who underwent LV VT ablation and had pre-procedural LGE-CMRs were enrolled. Virtual hearts with patient-specific scar and border zone identified potential VTs and ablation targets. Patient-specific PAVEL based on a population-derived statistical method localized VT exit sites onto a patient-specific 238-triangle LV endocardial surface.Results
Ten induced VTs were analyzed and 9-exit sites were localized by PAVEL onto the patient-specific LV endocardial surface. All nine predicted VT exit sites were in the scar border zone defined by voltage mapping and spatially correlated with successful clinical lesions. There were 2.3 ± 1.9 VTs per patient in the models. All five VAAT lesions fell within regions ablated clinically. VAAT targets correlated well with 6 PAVEL-predicted VT exit sites. The distance between the center of the predicted VT-exit-site triangle and nearest corresponding VAAT ablation lesion was 10.7 ± 7.3 mm.Conclusions
VAAT targets are concordant with the patient-specific PAVEL-predicted VT exit sites. These findings support investigation into combining these two complementary technologies as a noninvasive, clinical tool for targeting clinically induced VTs and regions likely to harbor potential VTs.
SUBMITTER: Zhou S
PROVIDER: S-EPMC8209410 | biostudies-literature |
REPOSITORIES: biostudies-literature