Project description:Rhodococcus genome sequence analysis has revealed a surprisingly large (and unexplored) potential for the production of secondary metabolites. Also, putative γ-butyrolactone gene clusters have been identified in some Rhodococci. These signalling molecules are known to regulate secondary metabolism in Streptomyces. This work provides evidence for synthesis of a γ-butyrolactone(-like) molecule by Rhodococci (RJB), the first report in the Rhodococcus genus. The Rhodococcus jostii RHA1 RJB molecule was detected by a reporter system based on the γ-butyrolactone receptor protein (ScbR) of Streptomyces coelicolor. This RJB is structurally identical to 6-dehydro SCB2, the predicted precursor of the S. coelicolor γ-butyrolactone SCB2. The R. jostii RHA1 key RJB biosynthesis gene was identified (gblA): Deletion of gblA resulted in complete loss of RJB synthesis whereas higher RJB levels were detected when gblA was overexpressed. Interaction of the RJB molecule with ScbR indicates that communication may occur between these two Actinomycete genera in their natural habitat. Furthermore, RJB may provide a highly relevant tool for awakening cryptic secondary metabolic gene clusters in Rhodococci. This study provides preliminary evidence that R. jostii RHA1 indeed synthesizes diffusible molecules with antimicrobial activity, but a possible role for RJB in this remains to be established.
Project description:BackgroundThe control of antibiotic production in Streptomyces coelicolor A3(2) involves complicated regulatory networks with multiple regulators controlling the expression of antibiotic biosynthetic pathways. One such regulatory network is that of the γ-butyrolactones, the so-called S. coelicolor butanolide (SCB) system. The γ-butyrolactones in this system serve as signalling molecules and bind to the receptor protein ScbR, releasing the repression of its target genes. The resulting expression changes affect the production of the two pigmented antibiotics Act and Red, as well as the transcription of the cpk antibiotic biosynthesis gene cluster and the synthesis of the γ-butyrolactones themselves.ResultsWe identified a natural variant of ScbR in S. coelicolor (ScbRM600) that differs from ScbR in the genome-sequenced strain M145 (ScbRM145) by a single amino acid change, R120S. ScbRM600 is impaired in its DNA binding ability and alters the expression of the pathway-specific regulatory genes of the red and cpk antibiotic biosynthesis gene clusters. Also, expression of the γ-butyrolactone biosynthesis gene scbA and production of the signalling molecules is slightly reduced.ConclusionsThe γ-butyrolactone receptor, ScbR, plays a key role in the SCB regulatory cascade and in determining the onset of the expression of the antibiotic regulatory genes.
Project description:Bacterial hormones, such as the iconic gamma-butyrolactone A-factor, are essential signaling molecules that regulate diverse physiological processes, including specialized metabolism. These low molecular weight compounds are common in Streptomyces species and display species-specific structural differences. Recently, unusual gamma-butyrolactone natural products called salinipostins were isolated from the marine actinomycete genus Salinispora based on their antimalarial properties. As the salinipostins possess a rare phosphotriester motif of unknown biosynthetic origin, we set out to explore its construction by the widely conserved 9-gene spt operon in Salinispora species. We show through a series of in vivo and in vitro studies that the spt gene cluster dually encodes the salinipostins and newly identified natural A-factor-like gamma-butyrolactones (Sal-GBLs). Remarkably, homologous biosynthetic gene clusters are widely distributed among many actinomycete genera, including Streptomyces, suggesting the significance of this operon in bacteria.
Project description:BackgroundMicrobes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts.ResultsThe fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol), oxidative (H2O2 and menadione) and cell wall stresses (Calcofluor White and Congo Red). There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress.ConclusionOur data are consistent with the hypothesis that fungal stress signalling components have undergone rapid recent evolution to tune the stress responses in a niche-specific fashion.
Project description:From Streptomyces virginiae, in which production of streptogramin antibiotic virginiamycin M(1) and S is tightly regulated by a low-molecular-weight Streptomyces hormone called virginiae butanolide (VB), which is a member of the gamma-butyrolactone autoregulators, the hormone biosynthetic gene (barS1) was cloned and characterized by heterologous expression in Escherichia coli and by gene disruption in S. virginiae. The barS1 gene (a 774-bp open reading frame encoding a 257-amino-acid protein [M(r), 27,095]) is situated in the 10-kb regulator island surrounding the VB-specific receptor gene, barA. The deduced BarS1 protein is weakly homologous to beta-ketoacyl-acyl carrier protein/coenzyme A reductase and belongs to the superfamily of short-chain alcohol dehydrogenase. The function of the BarS1 protein in VB biosynthesis was confirmed by BarS1-dependent in vitro conversion of 6-dehydro-VB-A to VB-A, the last catalytic step in VB biosynthesis. Of the four possible enantiomeric products from racemic 6-dehydro-VB-A as a substrate, only the natural enantiomer of (2R,3R,6S)-VB-A was produced by the purified recombinant BarS1 (rBarS1), indicating that rBarS1 is the stereospecific reductase recognizing (3R)-isomer as a substrate and reducing it stereospecifically to the (6S) product. In the DeltabarS1 mutant created by homologous recombination, the production of VB as well as the production of virginiamycin was lost. The production of virginiamycin by the DeltabarS1 mutant was fully recovered by the external addition of VB to the culture, which indicates that the barS1 gene is essential in the biosynthesis of the autoregulator VBs in S. virginiae and that the failure of virginiamycin production was a result of the loss of VB production.
Project description:The development of complex multispecies communities such as biofilms is controlled by interbacterial communication systems. We have previously reported an intergeneric communication between two oral bacteria, Streptococcus cristatus and Porphyromonas gingivalis, that results in inhibition of fimA expression. Here, we demonstrate that a surface protein, arginine deiminase (ArcA), of S. cristatus serves as a signal that initiates intergeneric communication. An ArcA-deficient mutant of S. cristatus is unable to communicate with P. gingivalis. Furthermore, arginase activity is not essential for the communication, and ArcA retains the ability to repress expression of fimA in the presence of arginine deiminase inhibitors. These results present a novel mechanism by which intergeneric communication in dental biofilms is accomplished.
Project description:The phylogenetic diversity of the intestinal microflora of a lower termite, Reticulitermes speratus, was examined by a strategy which does not rely on cultivation of the resident microorganisms. Small-subunit rRNA genes (16S rDNAs) were directly amplified from the mixed-population DNA of the termite gut by the PCR and were clonally isolated. Analysis of partial 16S rDNA sequences showed the existence of well-characterized genera as well as the presence of bacterial species for which no 16S rDNA sequence data are available. Of 55 clones sequenced, 45 were phylogenetically affiliated with four of the major groups of the domain Bacteria: the Proteobacteria, the spirochete group, the Bacteroides group, and the low-G+C-content gram-positive bacteria. Within the Proteobacteria, the 16S rDNA clones showed a close relationship to those of cultivated species of enteric bacteria and sulfate-reducing bacteria, while the 16S rDNA clones in the remaining three groups showed only distant relationships to those of known organisms in these groups. Of the remaining 10 clones, among which 8 clones formed a cluster, there was only very low sequence similarity to known 16S rRNA sequences. None of these clones were affiliated with any of the major groups within the domain Bacteria. The 16S rDNA gene sequence data show that the majority of the intestinal microflora of R. speratus consists of new, uncultured species previously unknown to microbiologists.
Project description:In this paper, fluorinated compounds based on sulfolane, cyclopentanone, and gamma-butyrolactone are studied computationally, focusing on their applicability in electrochemical devices and acid-base-related studies. Candidates for solvents with (1) high polarity, (2) good electrochemical stability, and (3) low basicity were searched for. Some of the compounds are studied here for the first time. Electrochemical stabilities, dielectric constants, boiling points, basicities, and lipophilicities were estimated using DFT and COSMO-RS methods with empirical corrections. The effect of fluorination on these properties as well as the bond parameters was studied. The possible synthesis routes of the proposed compounds are outlined. Some molecules display a combination of estimated properties favorable for a solvent, although none of the studied compounds are expected to surpass acetonitrile and propylene carbonate by the width of the electrochemical stability window.
Project description:Although the human bladder is reported to harbor unique microbiota, our understanding of how these microbial communities interact with their human hosts is limited, mostly owing to the lack of isolates to test mechanistic hypotheses. Niche-specific bacterial collections and associated reference genome databases have been instrumental in expanding knowledge of the microbiota of other anatomical sites, e.g., the gut and oral cavity. To facilitate genomic, functional, and experimental analyses of the human bladder microbiota, here we present a bladder-specific bacterial reference collection comprised of 1134 genomes. These genomes were culled from bacterial isolates obtained by a metaculturomic method from bladder urine collected by transurethral catheterization. This bladder-specific bacterial reference collection includes 196 different species, including representatives of major aerobes and facultative anaerobes, as well as some anaerobes. It captures 72.2 % of the genera found when we reexamined previously published 16S rRNA gene sequencing of 392 adult female bladder urine samples. Comparative genomic analysis found that the taxonomies and functions of the bladder microbiota shared more similarities with the vaginal microbiota than the gut microbiota. Whole-genome phylogenetic and functional analyses of 186 bladder E. coli isolates and 387 gut E. coli isolates supports the hypothesis that phylogroup distribution and functions of E. coli strains differ dramatically between these two very different niches. This bladder-specific bacterial reference collection is a unique resource that will enable hypothesis-driven bladder microbiota research and comparison to isolates from other anatomical sites.
Project description:BackgroundAlthough the human bladder is reported to harbor unique microbiota, our understanding of how these microbial communities interact with their human hosts is limited, mostly owing to the lack of isolates to test mechanistic hypotheses. Niche-specific bacterial collections and associated reference genome databases have been instrumental in expanding knowledge of the microbiota of other anatomical sites, such as the gut and oral cavity.ResultsTo facilitate genomic, functional, and experimental analyses of the human bladder microbiota, we present a bladder-specific bacterial isolate reference collection comprising 1134 genomes, primarily from adult females. These genomes were culled from bacterial isolates obtained by a metaculturomic method from bladder urine collected by transurethral catheterization. This bladder-specific bacterial isolate reference collection includes 196 different species, including representatives of major aerobes and facultative anaerobes, as well as some anaerobes. It captures 72.2% of the genera found when re-examining previously published 16S rRNA gene sequencing of 392 adult female bladder urine samples. Comparative genomic analysis finds that the taxonomies and functions of the bladder microbiota share more similarities with the vaginal microbiota than the gut microbiota. Whole-genome phylogenetic and functional analyses of 186 bladder Escherichia coli isolates and 387 gut Escherichia coli isolates support the hypothesis that phylogroup distribution and functions of Escherichia coli strains differ dramatically between these two very different niches.ConclusionsThis bladder-specific bacterial isolate reference collection is a unique resource that will enable bladder microbiota research and comparison to isolates from other anatomical sites.