Unknown

Dataset Information

0

Development of an Infinite Dilution Activity Coefficient Prediction Model for Organic Solutes in Ionic Liquids with Modified Partial Equalization Orbital Electronegativity Method Derived Descriptors.


ABSTRACT: The objective of this study was to develop a robust prediction model for the infinite dilution activity coefficients (γ ) of organic molecules in diverse ionic liquid (IL) solvents. Electrostatic, hydrogen bond, polarizability, molecular structure, and temperature terms were used in model development. A feed-forward model based on artificial neural networks was developed with 34,754 experimental activity coefficients, a combination of 195 IL solvents (88 cations and 38 anions), and 147 organic solutes at a temperature range of 298 to 408 K. The root mean squared error (RMSE) of the training set and test set was 0.219 and 0.235, respectively. The R 2 of the training set and the test set was 0.984 and 0.981, respectively. The applicability domain was determined through a Williams plot, which implied that water and halogenated compounds were outside of the applicability domain. The robustness test shows that the developed model is robust. The web server supports using the developed prediction model and is freely available at https://preadmet.bmdrc.kr/activitycoefficient_mainpage/prediction/.

SUBMITTER: Jeon HN 

PROVIDER: S-EPMC8210453 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8549394 | biostudies-literature
| S-EPMC8510351 | biostudies-literature
| S-EPMC7037026 | biostudies-literature
| S-EPMC4412692 | biostudies-literature
| S-EPMC7866074 | biostudies-literature
| S-EPMC5943952 | biostudies-literature
| S-EPMC6161819 | biostudies-literature
| S-EPMC6877754 | biostudies-literature
2021-08-13 | GSE156769 | GEO
| S-EPMC5022054 | biostudies-literature