Project description:BackgroundImpaired perfusion indices signal potential microvascular dysfunction preceding atherosclerosis and other cardiometabolic pathologies. Post-occlusive reactive hyperemia (PORH), a vasodilatory response following a mechanically induced ischemia, is a transient increase in perfusion and can assess microvascular function. The greatest blood flow change corresponding to the first minute of hyperemia (represented by time-to-peak, hyperemic velocity, AUC within 1st min) has been shown to indicate microvascular dysfunction. However, the reproducibility of these temporal kinetic indices of the PORH response is unknown. Our aim was to examine the inter- and intra-day reproducibility and standardization of reactive hyperemia, with emphasis on the kinetic indices of PORH, using laser speckle contrast imaging (LSCI) technique.Methods and resultsSeventeen healthy adults (age = 24 ± 3 years) completed three PORH bouts over two lab visits. LSCI region of interest was a standardized 10 cm region on the dominant ventral forearm. A 5-min brachial artery occlusion period induced by inflating an arm cuff to 200 mmHg, preceded a 4-min hyperemic period. Inter- and intra-day reliability and reproducibility of cutaneous vascular conductance (LSCI flux / mean arterial pressure) were determined using intraclass correlation (ICC) and coefficient of variation (CV%). Maximal flow and area under the curve standardized to zero perfusion showed intra- and inter-day reliability (ICC > 0.70). Time to maximal flow (TMF) was not reproducible (inter-day CV = 18%). However, alternative kinetic indices such as 1-min AUC and overshoot rate-of-change (ORC), represented as a piecewise function (at 5s, 10s, 15s, and 20s into hyperemia), were reproducible (CV< 11%). Biological zero was a reliable normalization point.ConclusionPORH measured with LSCI is a reliable assessment of microvascular function. However, TMF or its derived hyperemic velocity are not recommended for longitudinal assessment. Piecewise ORC and 1-min AUC are reliable alternatives to assess the kinetic response of PORH.
Project description:SignificanceMicrofluidic flow phantom studies are commonly used for characterizing the performance of laser speckle contrast imaging (LSCI) instruments. The selection of the flow control system is critical for the reliable generation of flow during testing. The majority of recent LSCI studies using microfluidics used syringe pumps for flow control.AimWe quantified the uncertainty in flow generation for a syringe pump and a pressure-regulated flow system. We then assessed the performance of both LSCI and multi-exposure speckle imaging (MESI) using the pressure-regulated flow system across a range of flow speeds.ApproachThe syringe pump and pressure-regulated flow systems were evaluated during stepped flow profile experiments in a microfluidic device using an inline flow sensor. The uncertainty associated with each flow system was calculated and used to determine the reliability for instrument testing. The pressure-regulated flow system was then used to characterize the relative performance of LSCI and MESI during stepped flow profile experiments while using the inline flow sensor as reference.ResultsThe pressure-regulated flow system produced much more stable and reproducible flow outputs compared to the syringe pump. The expanded uncertainty for the syringe pump was 8 to 20× higher than that of the pressure-regulated flow system across the tested flow speeds. Using the pressure-regulated flow system, MESI outperformed single-exposure LSCI at all flow speeds and closely mirrored the flow sensor measurements, with average errors of 4.6%±2.6% and 15.7%±4.6% , respectively.ConclusionsPressure-regulated flow systems should be used instead of syringe pumps when assessing the performance of flow measurement techniques with microfluidic studies. MESI offers more accurate relative flow measurements than traditional LSCI across a wide range of flow speeds.
Project description:Multi-exposure laser speckle contrast imaging (MELSCI) estimates microcirculatory blood perfusion more accurately than single-exposure LSCI. However, the technique has been hampered by technical limitations due to massive data throughput requirements and nonlinear inverse search algorithms, limiting it to an offline technique where data must be postprocessed. To present an MELSCI system capable of continuous acquisition and processing of MELSCI data, enabling real-time video-rate perfusion imaging with high accuracy. The MELSCI algorithm was implemented in programmable hardware (field programmable gate array) closely interfaced to a high-speed CMOS sensor for real-time calculation. Perfusion images were estimated in real-time from the MELSCI data using an artificial neural network trained on simulated data. The MELSCI perfusion was compared to two existing single-exposure metrics both quantitatively in a controlled phantom experiment and qualitatively in vivo. The MELSCI perfusion shows higher signal dynamics compared to both single-exposure metrics, both spatially and temporally where heartbeat-related variations are resolved in much greater detail. The MELSCI perfusion is less susceptible to measurement noise and is more linear with respect to laser Doppler perfusion in the phantom experiment (R2 = 0.992). The presented MELSCI system allows for real-time acquisition and calculation of high-quality perfusion at 15.6 frames per second.
Project description:Although there is increasing use of focused ultrasound stimulation (FUS) in brain studies, the real-time changes of the cerebral blood flow (CBF) due to FUS remain unclear. In this study, we developed a novel scheme combining FUS and laser speckle contrast imaging, which can be used to measure the CBF caused by FUS in real time. The results showed that the change of CBF increased from 0 to 30 s and reached up to the maximum of 115.1 ± 6.5% at 30 s and then decreased gradually from 30 to 60 s. This study demonstrates that FUS was able to increase CBF and alter cortical hemodynamic responses, which indicates that FUS is a potential non-invasive method to study ischemic stroke rehabilitation.
Project description:ObjectiveLaser-based tissue perfusion monitoring techniques have been increasingly used in animal and human research to assess blood flow. However, these techniques use arbitrary units, and knowledge about their comparability is scarce. This study aimed to model the relationship between laser speckle contrast imaging (LSCI) and laser Doppler perfusion imaging (LDPI), for measuring tissue perfusion over a wide range of blood flux values.MethodsFifteen healthy volunteers (53% female, median age 29 [IQR 22-40] years) were enrolled in this study. We performed iontophoresis with sodium nitroprusside on the forearm to induce regional vasodilation to increase skin blood flux. Besides, a stepwise vascular occlusion was applied on the contralateral upper arm to reduce blood flux. Both techniques were compared using a linear mixed model analysis.ResultsBaseline blood flux values measured by LSCI were 33 ± 6.5 arbitrary unit (AU) (Coefficient of variation [CV] = 20%) and by LDPI 60 ± 11.5 AU (CV = 19%). At the end of the iontophoresis protocol, the regional blood flux increased to 724 ± 412% and 259 ± 87% of baseline measured by LDPI and LSCI, respectively. On the other hand, during the stepwise vascular occlusion test, the blood flux reduced to 212 ± 40% and 412 ± 177% of its baseline at LDPI and LSCI, respectively. A strong correlation was found between the LSCI and LDPI instruments at increased blood flux with respect to baseline skin blood flux; however, the correlation was weak at reduced blood flux with respect to baseline.DiscussionLSCI and LDPI instruments are highly linear for blood flux higher than baseline skin blood flux; however, the correlation decreased for blood flux lower than baseline. This study's findings could be a basis for using LSCI in specific patient populations, such as burn care.
Project description:Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.
Project description:Primary outcome(s): -The percentage of operating surgeons that indicated no change in location of the anastomosis based on the additional Lapvas-Imaging derived visual feedback;
-The percentage of the non-involved surgeons that indicated no change in location of the anastomosis based on the additional Lapvas-Imaging derived visual feedback;
-The proportion of the indication of a change in location by operating and non-involved surgeons between patients with and without AL;
-The homogeneity of the change in location between non-involved surgeons for individual patients;
-The estimated change in location of the anastomosis proximal/distal in centimeters by the treating surgeon;
-The estimated change in location of the anastomosis proximal/distal in centimeters by non-involved surgeons;
-A change in the location of the anastomosis by non-involved surgeons in comparison to the operating surgeon;
-Development of anastomotic leakage;
-Extra time taken for imaging during surgery (seconds)
Study Design: N/A: single arm study, N/A , unknown, Other
Project description:BackgroundAnastomotic leakage (AL) is a dreaded complication following colorectal cancer surgery, impacting patient outcome and leads to increasing healthcare consumption as well as economic burden. Bowel perfusion is a significant modifiable factor for anastomotic healing and thus crucial for reducing AL.AimsThe study aimed to calculate a cut-off value for quantified laser speckle perfusion units (LSPUs) in order to differentiate between ischemic and well-perfused tissue and to assess inter-observer reliability.MethodsLSCI was performed using a porcine ischemic small bowel loop model with the PerfusiX-Imaging® system. An ischemic area, a well-perfused area, and watershed areas, were selected based on the LSCI colormap. Subsequently, local capillary lactate (LCL) levels were measured. A logarithmic curve estimation tested the correlation between LSPU and LCL levels. A cut-off value for LSPU and lactate was calculated, based on anatomically ischemic and well-perfused tissue. Inter-observer variability analysis was performed with 10 observers.ResultsDirectly after ligation of the mesenteric arteries, differences in LSPU values between ischemic and well-perfused tissue were significant (p < 0.001) and increased significantly throughout all following measurements. LCL levels were significantly different (p < 0.001) at both 60 and 120 min. Logarithmic curve estimation showed an R2 value of 0.56 between LSPU and LCL values. A LSPU cut-off value was determined at 69, with a sensitivity of 0.94 and specificity of 0.87. A LCL cut-off value of 3.8 mmol/L was found, with a sensitivity and specificity of 0.97 and 1.0, respectively. There was no difference in assessment between experienced and unexperienced observers. Cohen's Kappa values were moderate to good (0.52-0.66).ConclusionReal-time quantification of LSPUs may be a feasible intraoperative method to assess tissue perfusion and a cut-off value could be determined with high sensitivity and specificity. Inter-observer variability was moderate to good, irrespective of prior experience with the technique.
Project description:SignificanceVisualizing high-resolution hemodynamics in cerebral tissue over a large field of view (FOV), provides important information in studying disease states affecting the brain. Current state-of-the-art optical blood flow imaging techniques either lack spatial resolution or are too slow to provide high temporal resolution reconstruction of flow map over a large FOV.AimWe present a high spatial resolution computational optical imaging technique based on principles of laser speckle contrast imaging (LSCI) for reconstructing the blood flow maps in complex tissue over a large FOV provided that the three-dimensional (3D) vascular structure is known or assumed.ApproachOur proposed method uses a perturbation Monte Carlo simulation of the high-resolution 3D geometry for both accurately deriving the speckle contrast forward model and calculating the Jacobian matrix used in our reconstruction algorithm to achieve high resolution. Given the convex nature of our highly nonlinear problem, we implemented a mini-batch gradient descent with an adaptive learning rate optimization method to iteratively reconstruct the blood flow map. Specifically, we implemented advanced optimization techniques combined with efficient parallelization and vectorization of the forward and derivative calculations to make reconstruction of the blood flow map feasible with reconstruction times on the order of tens of minutes.ResultsWe tested our reconstruction algorithm through simulation of both a flow phantom model as well as an anatomically correct murine cerebral tissue and vasculature captured via two-photon microscopy. Additionally, we performed a noise study, examining the robustness of our inverse model in presence of 0.1% and 1% additive noise. In all cases, the blood flow reconstruction error was <2 % for most of the vasculature, except for the peripheral vasculature which suffered from insufficient photon sampling. Descending vasculature and deeper structures showed slightly higher sensitivity to noise compared with vasculature with a horizontal orientation at the more superficial layers. Our results show high-resolution reconstruction of the blood flow map in tissue down to 500 μm and beyond.ConclusionsWe have demonstrated a high-resolution computational imaging technique for visualizing blood flow map in complex tissue over a large FOV. Once a high-resolution structural image is captured, our reconstruction algorithm only requires a few LSCI images captured through a camera to reconstruct the blood flow map computationally at a high resolution. We note that the combination of high temporal and spatial resolution of our reconstruction algorithm makes the solution well-suited for applications involving fast monitoring of flow dynamics over a large FOV, such as in functional neural imaging.
Project description:We report the novel use of laser speckle contrast imaging (LSCI) at multiple exposure times (meLSCI) for enhanced in vivo imaging of the microvascular changes that accompany angiogenesis. LSCI is an optical imaging technique that can monitor blood vessels and the flow therein at a high spatial resolution without requiring the administration of an exogenous contrast agent. LSCI images are obtained under red (632 nm) laser illumination at seven exposure times (1-7 ms) and combined using a curve-fitting approach to obtain high-resolution meLSCI images of the rat brain vasculature. To evaluate enhancement in in vivo imaging performance, meLSCI images are statistically compared to individual LSCI images obtained at a single exposure time. We find that meLSCI reduced the observed variability in the LSCI-based blood-flow estimates by 30% and improved the contrast-to-noise ratio in regions with high microvessel density by 41%. The ability to better distinguish microvessels, makes meLSCI uniquely suited to longitudinal imaging of changes in the vascular microenvironment induced by pathological angiogenesis. We demonstrate this utility of meLSCI by sequentially monitoring, over days, the microvascular changes that accompany wound healing in a mouse ear model.