Ontology highlight
ABSTRACT: Importance
Patients with nonmetastatic nasopharyngeal carcinoma (NPC) are primarily treated by radiotherapy with curative intent with or without chemotherapy and often experience substantial treatment-related toxic effects even with modern radiation techniques, such as intensity-modulated radiation therapy (IMRT). Intensity-modulated proton therapy (IMPT) may improve the toxicity profile; however, there is a paucity of data given the limited availability of IMPT in regions with endemic NPC.Objective
To compare toxic effects and oncologic outcomes among patients with newly diagnosed nonmetastatic NPC when treated with IMPT vs IMRT with or without chemotherapy.Design, setting, and participants
This retrospective cohort study included 77 patients with newly diagnosed nonmetastatic NPC who received curative-intent radiotherapy with IMPT or IMRT at a tertiary academic cancer center from January 1, 2016, to December 31, 2019. Forty-eight patients with Epstein-Barr virus (EBV)-positive tumors were included in a 1:1 propensity score-matched analysis for survival outcomes. The end of the follow-up period was March 31, 2021.Exposures
IMPT vs IMRT with or without chemotherapy.Main outcomes and measures
The main outcomes were the incidence of acute and chronic treatment-related adverse events (AEs) and oncologic outcomes, including locoregional failure-free survival (LRFS), progression-free survival (PFS), and overall survival (OS).Results
We identified 77 patients (25 [32.5%] women; 52 [67.5%] men; median [interquartile range] age, 48.7 [42.2-60.3] years), among whom 28 (36.4%) were treated with IMPT and 49 (63.6%) were treated with IMRT. Median (interquartile range) follow-up was 30.3 (17.9-41.5) months. On multivariable logistic regression analyses, IMPT was associated with lower likelihood of developing grade 2 or higher acute AEs compared with IMRT (odds ratio [OR], 0.15; 95% CI, 0.03-0.60; P = .01). Only 1 case (3.8%) of a chronic grade 3 or higher AE occurred in the IMPT group compared with 8 cases (16.3%) in the IMRT group (OR, 0.21; 95% CI, 0.01-1.21; P = .15). Propensity score matching generated a balanced cohort of 48 patients (24 IMPT vs 24 IMRT) and found similar PFS in the IMPT and IMRT groups (2-year PFS, 95.7% [95% CI, 87.7%-100%] vs 76.7% [95% CI, 60.7%-97.0%]; hazard ratio [HR], 0.31; 95% CI, 0.07-1.47; P = .14). No locoregional recurrence or death was observed in the IMPT group from the matched cohort. Two-year LRFS was 100% (95% CI, 100%-100%) in the IMPT group and 86.2% (95% CI, 72.8%-100%) in the IMRT group (P = .08). Three-year OS was 100% (95% CI, 100%-100%) in the IMPT group and 94.1% (95% CI, 83.6%-100%) in the IMRT group (P = .42). Smoking history was the only clinical factor significantly associated with both poor LRFS (HR, 63.37; 95% CI, 3.25-1236.13; P = .006) and poor PFS (HR, 6.33; 95% CI, 1.16-34.57; P = .03) on multivariable analyses.Conclusions and relevance
In this study, curative-intent radiotherapy with IMPT for nonmetastatic NPC was associated with significantly reduced acute toxicity burden in comparison with IMRT, with rare late complications and excellent oncologic outcomes, including 100% locoregional control at 2 years. Prospective trials are warranted to direct the optimal patient selection for IMPT as the primary radiotherapy modality for nonmetastatic NPC.
SUBMITTER: Li X
PROVIDER: S-EPMC8214161 | biostudies-literature |
REPOSITORIES: biostudies-literature