Project description:The Toll-like receptor (TLR) and peptidoglycan recognition protein 1 (PGLYRP1) genes play key roles in the innate immune systems of mammals. While the TLRs recognize a variety of invading pathogens and induce innate immune responses, PGLYRP1 is directly microbicidal. We used custom allele-specific assays to genotype and validate 220 diallelic variants, including 54 nonsynonymous SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) for 37 cattle breeds. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and we were unable to differentiate between the specialized B. t. taurus beef and dairy breeds, despite an average polymorphism density of one locus per 219 bp. Ninety-nine tagSNPs and one tag insertion-deletion polymorphism were sufficient to predict 100% of the variation at all 11 innate immune loci in both subspecies and their hybrids, whereas 58 tagSNPs captured 100% of the variation at 172 loci in B. t. taurus. PolyPhen and SIFT analyses of nonsynonymous SNPs encoding amino acid replacements indicated that the majority of these substitutions were benign, but up to 31% were expected to potentially impact protein function. Several diversity-based tests provided support for strong purifying selection acting on TLR10 in B. t. taurus cattle. These results will broadly impact efforts related to bovine translational genomics.
Project description:Genomics research has relied principally on the establishment and curation of a reference genome for the species. However, it is increasingly recognized that a single reference genome cannot fully describe the extent of genetic variation within many widely distributed species. Pangenome representations are based on high-quality genome assemblies of multiple individuals and intended to represent the broadest possible diversity within a species. A Bovine Pangenome Consortium (BPC) has recently been established to begin assembling genomes from more than 600 recognized breeds of cattle, together with other related species to provide information on ancestral alleles and haplotypes. Previously reported de novo genome assemblies for Angus, Brahman, Hereford, and Highland breeds of cattle are part of the initial BPC effort. The present report describes a complete single haplotype assembly at chromosome-scale for a fullblood Simmental cow from an F1 bison-cattle hybrid fetus by trio binning. Simmental cattle, also known as Fleckvieh due to their red and white spots, originated in central Europe in the 1830s as a triple-purpose breed selected for draught, meat, and dairy production. There are over 50 million Simmental cattle in the world, known today for their fast growth and beef yields. This assembly (ARS_Simm1.0) is similar in length to the other bovine assemblies at 2.86 Gb, with a scaffold N50 of 102 Mb (max scaffold 156.8 Mb) and meets or exceeds the continuity of the best Bos taurus reference assemblies to date.
Project description:The sociality of cattle facilitates the maintenance of herd cohesion and synchronization, making these species the ideal choice for domestication as livestock for humans. However, livestock populations are not self-regulated, and farmers transfer individuals across different groups. Individuals consequently have to adapt to different group compositions during their lives rather than choose their own herd mates, as they would do in the wild. These changes may lead to social instability and stress, entailing potentially negative effects on animal welfare. In this study, we assess how the transfer of Highland cattle (Bos taurus) impacts individual and group social network measures. Four groups with nine different compositions and 18 individual transfers were studied to evaluate 1) the effect of group composition on individual social centralities and 2) the effect of group composition changes on these centralities. This study reveals that the relative stability of dyadic spatial relationships between changes in group composition or enclosure is due to the identities of transferred individuals more than the quantity of individuals that are transferred. Older cattle had higher network centralities than other individuals. The centrality of individuals was also affected by their sex and the number of familiar individuals in the group. This study reveals the necessity of understanding the social structure of a group to predict social instability following the transfer of individuals between groups. The developing of guidelines for the modification of group composition could improve livestock management and reduce stress for the animals concerned.
Project description:Proteins are the major constituents of muscle and are key molecules regulating the metabolic changes during conversion of muscle to meat. Brazil is one of the largest exporters of beef and most Brazilian cattle are composed by zebu (Nellore) genotype. Bos indicus beef is generally leaner and tougher than Bos taurus such as Angus. The aim of this study was to compare the muscle proteomic and phosphoproteomic profile of Angus and Nellore. Seven animals of each breed previously subjected the same growth management were confined for 84 days. Proteins were extracted from Longissimus lumborum samples collected immediately after slaughter and separated by two-dimensional electrophoresis. Pro-Q Diamond stain was used in phosphoproteomics. Proteins identification was performed using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Tropomyosin alpha-1 chain, troponin-T, myosin light chain-1 fragment, cytoplasmic malate dehydrogenase, alpha-enolase and 78 kDa glucose-regulated protein were more abundant in Nellore, while myosin light chain 3, prohibitin, mitochondrial stress-70 protein and heat shock 70 kDa protein 6 were more abundant in Angus (P<0.05). Nellore had higher phosphorylation of myosin regulatory light chain-2, alpha actin-1, triosephosphate isomerase and 14-3-3 protein epsilon. However, Angus had greater phosphorylation of phosphoglucomutase-1 and troponin-T (P<0.05). Therefore, proteins involved in contraction and muscle organization, myofilaments expressed in fast or slow-twitch fibers and heat shock proteins localized in mitochondria or sarcoplasmic reticulum and involved in cell flux of calcium and apoptosis might be associated with differences in beef quality between Angus and Nellore. Furthermore, prohibitin appears to be a potential biomarker of intramuscular fat in cattle. Additionally, differences in phosphorylation of myofilaments and glycolytic enzymes could be involved with differences in muscle contraction force, susceptibility to calpain, apoptosis and postmortem glycolysis, which might also be related to differences in beef quality among Angus and Nellore.
Project description:Domestic cattle (Bos taurus taurus) are adapted to digest high-roughage diets, but in confinement they are commonly fed low-roughage, high-energy diets. This practice may leave cattle with an unfulfilled need to consume forage. A way to quantify motivation is to require animals to work to access a resource. Using this method, we evaluated cattle motivation to obtain forage when fed high- or low-roughage diets during and 30 d before the study. Individual heifers were fed Sudan grass (Sorghum × drummondii) hay (high roughage, n = 6) or a diet with 12% forage (as fed, low roughage, n = 6) in an open feed trough. In a second trough, 200 g/d of Sudan grass hay were fed behind a push gate, to which additional weight was added daily until heifers no longer pushed. We predicted heifers would push heavier weights, show a shorter latency, and spend more time pushing the gate when fed a low- vs. high-roughage diet. Indeed, heifers fed a low-roughage diet pushed the gate immediately after hay delivery (1.7 min) and much sooner than those fed a high-roughage diet (75.7 min). On the day before they no longer pushed the gate, latency for heifers in the low-roughage treatment remained only 3.2 min after hay delivery. The suddenness with which they ceased pushing the next day suggests they were unable to move heavier weights to express their motivation. This may explain why maximum weight pushed and time spent pushing the gate did not differ between treatments. The gate pushing by heifers with unrestricted hay access is the first demonstration by cattle of contrafreeloading: performing work to obtain a resource that is simultaneously available for free. In conclusion, consuming forage is important to cattle and is affected by both their primary diet and an internal motivation to work to obtain feed.
Project description:The cattle tick, Rhipicephalus (Boophilus) microplus, is a major threat to the improvement of cattle production in tropical and subtropical countries worldwide. Bos indicus cattle are naturally more resistant to infestation with the cattle tick than are Bos taurus breeds, although considerable variation in resistance occurs within and between breeds. It is not known which genes contribute to the resistant phenotype, nor have immune parameters involved in resistance to R. microplus been fully described for the bovine host. This study was undertaken to determine whether selected cellular and antibody parameters of the peripheral circulation differed between tick-resistant Bos indicus and tick-susceptible Bos taurus cattle following a period of tick infestations. This study demonstrated significant differences between the two breeds with respect to the percentage of cellular subsets comprising the peripheral blood mononuclear cell population, cytokine expression by peripheral blood leukocytes, and levels of tick-specific immunoglobulin G1 (IgG1) antibodies measured in the peripheral circulation. In addition to these parameters, the Affymetrix bovine genome microarray was used to analyze gene expression by peripheral blood leukocytes of these animals. The results demonstrate that the Bos indicus cattle developed a stabilized T-cell-mediated response to tick infestation evidenced by their cellular profile and leukocyte cytokine spectrum. The Bos taurus cattle demonstrated cellular and gene expression profiles consistent with a sustained innate, inflammatory response to infestation, although high tick-specific IgG1 titers suggest that these animals have also developed a T-cell response to infestation.
Project description:Chromosome banding techniques were applied and standardized to obtain karyotype characteristics for the first time in Brazil of Nelore cattle - Bos taurus indicus Linnaeus, 1758 - (bovine subspecies most prominent in Brazilian livestock). Blood samples were collected from the animals of the School of Agrarian and Biological Sciences of the Pontifical Catholic University of Goiás, two males and two females of pure breed. These samples were submitted to the cell culture method to study metaphase chromosomes. Chromosome banding techniques (C, G and NOR) revealed the karyotype architecture of Nelore cattle common with that of other breeds of zebu cattle formerly karyotyped. The diploid chromosome number was invariably normal, 2n = 60. C-banding revealed C-positive heterochromatin in centromeric regions almost in all chromosomes. G-banding presented the expected band pattern in the respective chromosome pairs in correspondence with the established chromosomal patterns for the species. Ag-staining for nucleolus organizer regions (AgNOR) was identified on the telomeric end of the long arm in 7 autosomal chromosomes. In this study we found more regions in chromosomes with staining than presented in the literature for the Bos indicus group (BIN). These NOR regions were repeated on the same chromosomes for the 4 animals studied.
Project description:With roles in development, cell proliferation and disease, micro-RNA (miRNA) biology is of great importance and a potential therapeutic target. Here we used cross-linking immunoprecipitation (CLIP) and ligation of miRNA-target chimeras on the Argonaute (AGO) protein to globally map miRNA interactions in the cow. The interactome is the deepest reported to date. miRNA targeting principles are consistent with observations in other species, but with expanded pairing rules. Experimental mapping robustly predicted functional miR-17 regulatory sites. From miRNA-specific targeting for >5000 mRNAs we determined gene ontologies (GO). This confirmed repression of genes important for embryonic development and cell cycle progress by the let-7 family, and repression of those involved in cell cycle arrest by the miR-17 family, but also suggested a number of unappreciated miRNA functions. Our results provide a significant resource for understanding of bovine and species-conserved miRNA regulation, and demonstrate the power of experimental methods for establishing comprehensive interaction maps.
Project description:The de novo metagenome assembly for C1-TPA is 68,577,389 bp long spread over 10,108 contigs, while that of C3-TPA is 55,517,929 bp distributed over 9,415 contigs. A total of 8 metagenome-assembled genomes (MAGs) were extracted from C1-TPA, and 10 were extracted from C3-TPA. Both samples have a Flavobacterium sp. and a Pseudomonas sp. in common among their bacterial communities.