Project description:Protein basis sets have been extensively used as reference data for the determination of protein structure with optical methods such as circular dichroism and infrared spectroscopies. We have taken a new approach to basis protein selection by utilizing three crystal structure classification databases: CATH, SCOP, and PDB_SELECT. Through the use of the information available in these and other online resources, we identified 115 commercially available proteins as potential basis set candidates. By carefully screening the quality of the crystal structures and commercial protein preparations, we obtained a final set of 50 rationally selected proteins (RaSP50) that has been optimized for use in spectroscopic protein structure determination studies. These proteins span the full range of known protein folds as well as alpha-helix and beta-sheet contents, and they represent a more comprehensive variety of fold types than any previous reference set. This report includes a detailed presentation of the reasoning behind the rational protein selection process, a description of the properties of the RaSP50 set, and a discussion of the types of structural and spectral variations that are represented in the set.
Project description:Soil contamination with heavy metal could induce the alteration of soil ecological environments, and soil enzyme activities are sensitive indicators for the soil toxicology. Xylanase is one of predominant soil enzymes related to carbon nitrogen cycle. In this work, we explored the underlying mechanisms for conformational and enzymatic activity alterations of xylanase after silver and lead exposure at molecular level with systematical measurements including multiple spectroscopic methods, isothermal titration calorimetry, and enzymatic activity. Both silver and lead could loosen and unfold the skeleton of xylanase with the quenching of endogenous fluorescence. Silver interacted with xylanase forming larger-size aggregations through Van der Waals forces and hydrogen bonding, while lead interacted with xylanase forming larger-size aggregations through hydrophobic force. Silver and lead induced an obvious loss (67.1 and 56.31%) of the xylanase enzymatic activity, but silver has a greater impact on xylanase than that of lead. The xylanase enzymatic activity significantly decreased due to the conformational alterations. The negative effect of silver exposure on xylanase structure and function was more prominent than that of lead.
Project description:The terminal step of 4-hydroxy-3-nitrosobenzamide biosynthesis in Streptomyces murayamaensis is performed by NspF, a mono-oxygenase that converts o-aminophenols to the corresponding nitroso product (hydroxyanilinase activity). Previous biochemical characterization of the resting form of NspF suggested that this enzyme belonged to the coupled binuclear copper enzyme (CBC) family. Another member of this enzyme family, tyrosinase, is able to mono-oxygenate monophenols (monophenolase activity) but not o-aminophenols. To gain insight into the unique reactivity of NspF, we have generated and characterized the oxy form of its active site. The observation of spectral features identical to those of oxy-tyrosinase indicates that oxy-NspF contains a Cu(2)O(2) core where peroxide is coordinated in a ?-?(2):?(2) mode, confirming that NspF is a CBC enzyme. This oxy form is found to react with monophenols, indicating that, like tyrosinase, NspF also possesses monophenolase activity. A comparison of the two electrophilic mechanisms for the monophenolase and hydroxyanilinase activity indicates a large geometric change between their respective transition states. The potential for specific interactions between the protein pocket and the substrate in each transition state is discussed within the context of the differential reactivity of this family of enzymes with equivalent ?-?(2):?(2) peroxy bridged coupled binuclear copper active sites.
Project description:One of the major goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to fill the knowledge gaps between human genomic information and the corresponding proteomic information. These gaps are due to "missing" proteins (MPs)-predicted proteins with insufficient evidence from mass spectrometry (MS), biochemical, structural, or antibody analyses-that currently account for 2579 of the 19587 predicted human proteins (neXtProt, 2017-01). We address some of the lessons learned from the inconsistent annotations of missing proteins in databases (DB) and demonstrate a systematic proteogenomic approach designed to explore a potential new function of a known protein. To illustrate a cautious and strategic approach for characterization of novel function in vitro and in vivo, we present the case of Na(+)/H(+) exchange regulatory cofactor 1 (NHERF1/SLC9A3R1, located at chromosome 17q25.1; hereafter NHERF1), which was mistakenly labeled as an MP in one DB (Global Proteome Machine Database; GPMDB, 2011-09 release) but was well known in another public DB and in the literature. As a first step, NHERF1 was determined by MS and immunoblotting for its molecular identity. We next investigated the potential new function of NHERF1 by carrying out the quantitative MS profiling of placental trophoblasts (PXD004723) and functional study of cytotrophoblast JEG-3 cells. We found that NHERF1 was associated with trophoblast differentiation and motility. To validate this newly found cellular function of NHERF1, we used the Caenorhabditis elegans mutant of nrfl-1 (a nematode ortholog of NHERF1), which exhibits a protruding vulva (Pvl) and egg-laying-defective phenotype, and performed genetic complementation work. The nrfl-1 mutant was almost fully rescued by the transfection of the recombinant transgenic construct that contained human NHERF1. These results suggest that NHERF1 could have a previously unknown function in pregnancy and in the development of human embryos. Our study outlines a stepwise experimental platform to explore new functions of ambiguously denoted candidate proteins and scrutinizes the mandated DB search for the selection of MPs to study in the future.
Project description:To assess photoreceptor structure and function in patients with congenital achromatopsia.Twelve patients were enrolled. All patients underwent a complete ocular examination, spectral-domain optical coherence tomography (SD-OCT), full-field electroretinographic (ERG), and color vision testing. Macular microperimetry (MP; in four patients) and adaptive optics (AO) imaging (in nine patients) were also performed. Blood was drawn for screening of disease-causing genetic mutations.Mean (± SD) age was 30.8 (± 16.6) years. Mean best-corrected visual acuity was 0.85 (± 0.14) logarithm of the minimal angle of resolution (logMAR) units. Seven patients (58.3%) showed either an absent foveal reflex or nonspecific retinal pigment epithelium mottling to mild hypopigmentary changes on fundus examination. Two patients showed an atrophic-appearing macular lesion. On anomaloscopy, only 5 patients matched over the entire range from 0 to 73. SD-OCT examination showed a disruption or loss of the macular inner/outer segments (IS/OS) junction of the photoreceptors in 10 patients (83.3%). Seven of these patients showed an optically empty space at the level of the photoreceptors in the fovea. AO images of the photoreceptor mosaic were highly variable but significantly disrupted from normal. On ERG testing, 10 patients (83.3%) showed evidence of residual cone responses to a single-flash stimulus response. The macular MP testing showed that the overall mean retinal sensitivity was significantly lower than normal (12.0 vs. 16.9 dB, P < 0.0001).The current approach of using high-resolution techniques to assess photoreceptor structure and function in patients with achromatopsia should be useful in guiding selection of patients for future therapeutic trials as well as monitoring therapeutic response in these trials.
Project description:Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation. We reported previously that PKM2 is abundant in photoreceptor cells in mouse retinas. In the present study, we conditionally deleted PKM2 (rod-cre PKM2-KO) in rod photoreceptors and found that the absence of PKM2 causes increased expression of PKM1 in rods. Analysis of metabolic flux from U-13C glucose shows that rod-cre PKM2-KO retinas accumulate glycolytic intermediates, consistent with an overall reduction in the amount of pyruvate kinase activity. Rod-cre PKM2-KO mice also have an increased NADPH availability could favor lipid synthesis, but we found no difference in phospholipid synthesis between rod-cre PKM2 KO and PKM2-positive controls. As rod-cre PKM2-KO mice aged, we observed a significant loss of rod function, reduced thickness of the photoreceptor outer segment layer, and reduced expression of photoreceptor proteins, including PDE6?. The rod-cre PKM2-KO retinas showed greater TUNEL staining than wild-type retinas, indicating a slow retinal degeneration. In vitro analysis showed that PKM2 can regulate transcriptional activity from the PDE6? promoter in vitro. Our findings indicate that both the metabolic and transcriptional regulatory functions of PKM2 may contribute to photoreceptor structure, function, and viability.
Project description:Advances in protein structure determination, led by the structural genomics initiatives have increased the proportion of novel folds deposited in the Protein Data Bank. However, these structures are often not accompanied by functional annotations with experimental confirmation. In this review, we reassess the meaning of structural novelty and examine its relevance to the complexity of the structure-function paradigm. Recent advances in the prediction of protein function from structure are discussed, as well as new sequence-based methods for partitioning large, diverse superfamilies into biologically meaningful clusters. Obtaining structural data for these functionally coherent groups of proteins will allow us to better understand the relationship between structure and function.
Project description:Peripherin 2 (Prph2) is a photoreceptor tetraspanin, and deletion of codon 153 (K153Δ) leads to retinitis pigmentosa, pattern dystrophy, and fundus flavimaculatus in the same family. To study this variability, we generated a K153Δ-Prph2 knockin mouse. K153Δ-Prph2 cannot form the complexes required for outer segment formation, and in cones cannot interact with its binding partner rod outer segment membrane protein 1. K153Δ causes dominant defects in rod and cone function; however, rod but not cone ultrastructure is improved by the presence of K153Δ-Prph2. Likewise, supplementation of K153Δ heterozygotes with WT-Prph2 results in structural but not functional improvements. These results support the idea that mutations may differentially affect Prph2's role as a structural component, and its role as a functional protein key for organizing membrane domains for cellular signalling. These roles may be different in rods and cones, thus contributing to the phenotypic heterogeneity that characterizes diseases associated with Prph2 mutations.
Project description:This is the first study of the crystal structure of cardamonin (CA) confirmed using single-crystal XRD analysis. In the crystal lattice of CA, two symmetry independent molecules are linked by hydrogen bonds within the layers and by the π···π stacking interactions in the columns which lead to the occurrence of two types of conformations among the CA molecules in the crystal structure. To better understand the stability of these arrangements in both crystals and the gaseous phase, seven different CA dimers were theoretically calculated. The molecular structures were optimized using density functional theory (DFT) at the B3LYP/6-311G+(d,p) level and the spectroscopic results were compared. It was found that the calculated configurations of dimer I and III were almost identical to the ones found in the CA crystal lattice. The calculated UV-Vis spectra for the CA monomer and dimer I were perfectly consistent with the experimental spectroscopic data. Furthermore, enhanced emissions induced by aggregated CA molecules were registered in the aqueous solution with the increase of water fractions. The obtained results will help to further understand the relation between a variety of conformations and the biological properties of CA, and the results are also promising in terms of the applicability of CA as a bioimaging probe to monitor biological processes.
Project description:The only approved retinal gene therapy is for biallelic RPE65 mutations which cause a recessive retinopathy with a primary molecular defect located at the retinal pigment epithelium (RPE). For a distinct recessive RPE disease caused by biallelic BEST1 mutations, a pre-clinical proof-of-concept for gene therapy has been demonstrated in canine eyes. The current study was undertaken to consider potential outcome measures for a BEST1 clinical trial in patients demonstrating a classic autosomal recessive bestrophinopathy (ARB) phenotype. Spatial distribution of retinal structure showed a wide expanse of abnormalities including large intraretinal cysts, shallow serous retinal detachments, abnormalities of inner and outer segments, and an unusual prominence of the external limiting membrane. Surrounding the central macula extending from 7 to 30 deg eccentricity, outer nuclear layer was thicker than expected from a cone only retina and implied survival of many rod photoreceptors. Co-localized however, were large losses of rod sensitivity despite preserved cone sensitivities. The dissociation of rod function from rod structure observed, supports a large treatment potential in the paramacular region for biallelic bestrophinopathies.