Depicting the molecular responses of adventitious rooting to waterlogging in melon hypocotyls by transcriptome profiling.
Ontology highlight
ABSTRACT: Waterlogging is a severe abiotic stressor that inhibits crop growth and productivity owing to the decline in the amount of oxygen available to the waterlogged organs. Although melon (Cucumis melo L.) is sensitive to waterlogging, its ability to form adventitious roots facilitates the diffusion of oxygen and allows the plant to survive waterlogging. To provide comprehensive insight into the adventitious rooting in response to waterlogging of melon, global transcriptome changes during this process were investigated. Of the 17,146 genes expressed during waterlogging, 7363 of them were differentially expressed in the pairwise comparisons between different waterlogging treatment time points. A further analysis suggested that the genes involved in sugar cleavage, glycolysis, fermentation, reactive oxygen species scavenging, cell wall modification, cell cycle governing, microtubule remodeling, hormone signals and transcription factors could play crucial roles in the adventitious root production induced by waterlogging. Additionally, ethylene and ERFs were found to be vital factors that function in melon during adventitious rooting. This study broadens our understanding of the mechanisms that underlie adventitious rooting induced by waterlogging and lays the theoretical foundation for further molecular breeding of waterlogging-tolerant melon.Supplementary information
The online version contains supplementary material available at 10.1007/s13205-021-02866-w.
SUBMITTER: Zhang H
PROVIDER: S-EPMC8217412 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA