Project description:IntroductionThe BNT162b2 and mRNA-1273 COVID-19 vaccines are the main vaccines that have been used for mass vaccination in Japan. Information on adverse reactions to COVID-19 vaccines in the Japanese population is limited.MethodsWe conducted an online survey on self-reported adverse reactions in individuals who had received two doses of the BNT162b2 or mRNA-1273 vaccine. The incidence of adverse events after each dose of vaccine was investigated. Propensity score matching was used to compare the incidence of adverse reactions after the second dose of the BNT162b2 and mRNA-1273 vaccines.ResultsAfter the first and second doses of the BNT162b2 vaccine, and the first and second doses of the mRNA-1273 vaccine, 890, 853, 6401, and 3965 individuals, respectively, provided complete responses. Systemic reactions, including fever, fatigue, headache, muscle/joint pain, and nausea were significantly more common in females, individuals aged <50 years, and after the second dose. The incidence of injection site pain did not differ significantly according to the dose. The incidence of delayed injection site reactions after the first dose of mRNA-1273 vaccine was 3.9% and 0.8% among females and males, respectively, and 10.6% among females aged 40-69 years. Local and systemic reactions after the second dose, including fever, fatigue, headache, muscle/joint pain, nausea, and skin rash were more common in individuals who had received the mRNA-1273 vaccine.ConclusionsAdverse reactions were more frequently reported in females, younger individuals, and after the mRNA-1273 vaccine.
Project description:The aim of this study was to assess adverse reactions to COVID-19 vaccines, comparing the BNT162b2 or the mRNA-1273 COVID-19 vaccines and the presence and seriousness of a previous COVID-19 infection. We conducted a cross-sectional online survey of vaccinated healthcare workers at a tertiary hospital in Barcelona (Spain). Thirty-eight percent of vaccine recipients responded to the questionnaire. We compared the prevalence of adverse reactions by vaccine type and history of COVID-19 infections. A total of 2373 respondents had received the BNT162b2 vaccine, and 506 the mRNA-1273 vaccine. The prevalence of at least one adverse reaction with doses 1 and 2 was 41% and 70%, respectively, in the BNT162b2 group, and 60% and 92% in the mRNA-1273 group (p < 0.001). The BNT162b2 group reported less prevalence of all adverse reactions. Need for medical leave was significantly more frequent among the mRNA-1273 group (12% versus 4.6% p < 0.001). Interestingly, respondents with a history of allergies or chronic illnesses did not report more adverse reactions. The frequency of adverse reactions with dose 2 was 96% (95% CI 88-100%) for those with a history of COVID-19 related hospitalization, and 86% (95% CI 83-89%) for those with mild or moderate symptomatic COVID-19, significantly higher than for participants with no history of COVID-19 infections (67%, 95% CI 65-69%). Our results could help inform vaccine recipients of the probability of their having adverse reactions to COVID-19 vaccines.
Project description:BackgroundHomo sapiens have experienced admixture many times in the last few thousand years. To examine how admixture affects local adaptation, we investigated genomes of modern Polynesians, who are shaped through admixture between Austronesian-speaking people from Southeast Asia (Asian-related ancestors) and indigenous people in Near Oceania (Papuan-related ancestors).MethodsIn this study local ancestry was estimated across the genome in Polynesians (23 Tongan subjects) to find the candidate regions of admixture-enabled selection contributed by Papuan-related ancestors.ResultsThe mean proportion of Papuan-related ancestry across the Polynesian genome was estimated as 24.6% (SD = 8.63%), and two genomic regions, the extended major histocompatibility complex (xMHC) region on chromosome 6 and the ATP-binding cassette transporter sub-family C member 11 (ABCC11) gene on chromosome 16, showed proportions of Papuan-related ancestry more than 5 SD greater than the mean (> 67.8%). The coalescent simulation under the assumption of selective neutrality suggested that such signals of Papuan-related ancestry enrichment were caused by positive selection after admixture (false discovery rate = 0.045). The ABCC11 harbors a nonsynonymous SNP, rs17822931, which affects apocrine secretory cell function. The approximate Bayesian computation indicated that, in Polynesian ancestors, a strong positive selection (s = 0.0217) acted on the ancestral allele of rs17822931 derived from Papuan-related ancestors.ConclusionsOur results suggest that admixture with Papuan-related ancestors contributed to the rapid local adaptation of Polynesian ancestors. Considering frequent admixture events in human evolution history, the acceleration of local adaptation through admixture should be a common event in humans.
Project description:BackgroundInfluenza viruses are constantly evolving through antigenic drift, which makes vaccines potentially ill-matched to circulating strains due to the time between strain selection and distribution. mRNA technology could improve vaccine effectiveness (VE) by reducing this time. Significant private and public investments would be required to accommodate accelerated vaccine development and approval. Hence, it is important to understand the potential impact of mRNA technology on influenza hospitalizations and mortality.MethodsWe developed an age-stratified dynamic model of influenza transmission to evaluate the potential impact of increased VE (increased protection against either infection or only hospitalization) on hospitalizations and mortality in the United States. We assume that mRNA technology allows for delaying the time to strain choice, which might increase efficacy, but it does not reduce the time needed for distribution and administration, which might reduce availability. To assess this tradeoff, we evaluated two scenarios where strain choice was delayed until late summer resulting in a more effective vaccine available to (1) all age groups by October, or (2) adults 65 years and older starting in August.ResultsIf not available until October, the vaccine would need a minimum of 95% effectiveness against infection to see a decrease in hospitalizations and deaths in all age groups. When delayed until November, even a 100% effective vaccine had no significant impact. For the elderly, the minimum required VE (against infection) was 50% to reduce hospitalizations and deaths. Moreover, a vaccine with 80% VE against infection available in August for the 65 + age group was better than a 95% effective vaccine available in October for all ages.ConclusionsAs the majority of influenza-associated hospitalizations and deaths are in adults 65 years and older, a combination policy targeting higher VE and coverage for this age group in the short term would be the most efficacious.
Project description:The Food and Drug Administration (FDA) has recently authorized the two messenger RNA (mRNA) vaccines BNT162b2 and mRNA-1273 for emergency use against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the COVID-19 coronavirus disease. BNT162b2 and mRNA-1273 vaccines were developed by Pfizer-BioNTech and Moderna, respectively, in 2020. The United Kingdom, Bahrain, Canada, Mexico, United States, Singapore, Oman, Saudi Arabia, Kuwait, and European Union began their vaccination programs with the BNT162b2 vaccine, while the United States and Canada also started the mRNA-1273 vaccination program in mid December 2020. On 28th December 2020, studies reported severe allergic reactions in people who received the BNT162b2, and few people who received the mRNA-1273 vaccine. Authors of the letter thus attempt to explore possible causes of anaphylaxis following COVID-19 vaccination.
Project description:Increases in the world's population and population density promote the spread of emerging pathogens. Vaccines are the most cost-effective means of preventing this spread. Traditional methods used to identify and produce new vaccines are not adequate, in most instances, to ensure global protection. New technologies are urgently needed to expedite large scale vaccine development. mRNA-based vaccines promise to meet this need. mRNA-based vaccines exhibit a number of potential advantages relative to conventional vaccines, namely they (1) involve neither infectious elements nor a risk of stable integration into the host cell genome; (2) generate humoral and cell-mediated immunity; (3) are well-tolerated by healthy individuals; and (4) are less expensive and produced more rapidly by processes that are readily standardized and scaled-up, improving responsiveness to large emerging outbreaks. Multiple mRNA vaccine platforms have demonstrated efficacy in preventing infectious diseases and treating several types of cancers in humans as well as animal models. This review describes the factors that contribute to maximizing the production of effective mRNA vaccine transcripts and delivery systems, and the clinical applications are discussed in detail.
Project description:The ongoing COVID-19 pandemic and its unprecedented global societal and economic disruptive impact highlight the urgent need for safe and effective vaccines. Taking substantial advantages of versatility and rapid development, two mRNA vaccines against COVID-19 have completed late-stage clinical assessment at an unprecedented speed and reported positive results. In this review, we outline keynotes in mRNA vaccine development, discuss recently published data on COVID-19 mRNA vaccine candidates, focusing on those in clinical trials and analyze future potential challenges.
Project description:mRNA vaccines have evolved from being a mere curiosity to emerging as COVID-19 vaccine front-runners. Recent advancements in the field of RNA technology, vaccinology, and nanotechnology have generated interest in delivering safe and effective mRNA therapeutics. In this review, we discuss design and self-assembly of mRNA vaccines. Self-assembly, a spontaneous organization of individual molecules, allows for design of nanoparticles with customizable properties. We highlight the materials commonly utilized to deliver mRNA, their physicochemical characteristics, and other relevant considerations, such as mRNA optimization, routes of administration, cellular fate, and immune activation, that are important for successful mRNA vaccination. We also examine the COVID-19 mRNA vaccines currently in clinical trials. mRNA vaccines are ready for the clinic, showing tremendous promise in the COVID-19 vaccine race, and have pushed the boundaries of gene therapy.