Project description:The endothelium is a crucial regulator of vascular homeostasis by controlling barrier integrity as well acting as an important signal transducer, thereby illustrating that endothelial cells are not inert cells. In the context of atherosclerosis, this barrier function is impaired and endothelial cells become activated, resulting in the upregulation of adhesion molecules, secretion of cytokines and chemokines and internalization of integrins. Finally, this leads to increased vessel permeability, thereby facilitating leukocyte extravasation as well as fostering a pro-inflammatory environment. Additionally, activated endothelial cells can form migrating tip cells and proliferative stalk cells, resulting in the formation of new blood vessels. Emerging evidence has accumulated indicating that cellular metabolism is crucial in fueling these pro-atherosclerotic processes, including neovascularization and inflammation, thereby contributing to plaque progression and altering plaque stability. Therefore, further research is necessary to unravel the complex mechanisms underlying endothelial cell metabolic changes, and exploit this knowledge for finding and developing potential future therapeutic strategies. In this review we discuss the metabolic alterations endothelial cells undergo in the context of inflammation and atherosclerosis and how this relates to changes in endothelial functioning. Finally, we will describe several metabolic targets that are currently being used for therapeutic interventions.
Project description:Vascular aging is based on the development of endothelial dysfunction, which is thought to be promoted by senescent cells accumulating in aged tissues and is possibly affected by their environment via inflammatory mediators and oxidative stress. Senescence appears to be closely interlinked with changes in cell metabolism. Here, we describe an upregulation of both glycolytic and oxidative glucose metabolism in replicative senescent endothelial cells compared to young endothelial cells by employing metabolic profiling and glucose flux measurements and by analyzing the expression of key metabolic enzymes. Senescent cells exhibit higher glycolytic activity and lactate production together with an enhanced expression of lactate dehydrogenase A as well as increases in tricarboxylic acid cycle activity and mitochondrial respiration. The latter is likely due to the reduced expression of pyruvate dehydrogenase kinases (PDHKs) in senescent cells, which may lead to increased activity of the pyruvate dehydrogenase complex. Cellular and mitochondrial ATP production were elevated despite signs of mitochondrial dysfunction, such as an increased production of reactive oxygen species and extended mitochondrial mass. A shift from glycolytic to oxidative glucose metabolism induced by pharmacological inhibition of PDHKs in young endothelial cells resulted in premature senescence, suggesting that alterations in cellular glucose metabolism may act as a driving force for senescence in endothelial cells.
Project description:In subretinal inflammation, activated mononuclear phagocytes (MP) play a key role in the progression of retinopathies. Little is known about the mechanism involved in the loss of photoreceptors leading to vision impairment. Studying retinal damage induced by photo-oxidative stress, we observed that cluster of differentiation 36 (CD36)-deficient mice featured less subretinal MP accumulation and attenuated photoreceptor degeneration. Moreover, treatment with a CD36-selective azapeptide ligand (MPE-001) reduced subretinal activated MP accumulation in wild type mice and preserved photoreceptor layers and function as assessed by electroretinography in a CD36-dependent manner. The azapeptide modulated the transcriptome of subretinal activated MP by reducing pro-inflammatory markers. In isolated MP, MPE-001 induced dissociation of the CD36-Toll-like receptor 2 (TLR2) oligomeric complex, decreasing nuclear factor-kappa B (NF-κB) and NLR family pyrin domain containing 3 (NLRP3) inflammasome activation. In addition, MPE-001 caused an aerobic metabolic shift in activated MP, involving peroxisome proliferator-activated receptor-γ (PPAR-γ) activation, which in turn mitigated inflammation. Accordingly, PPAR-γ inhibition blocked the cytoprotective effect of MPE-001 on photoreceptor apoptosis elicited by activated MP. By altering activated MP metabolism, MPE-001 decreased immune responses to alleviate subsequent inflammation-dependent neuronal injury characteristic of various vision-threatening retinal disorders.
Project description:ObjectiveThe disruption of mitochondrial redox homeostasis in endothelial cells (ECs) can cause chronic inflammation, a substantial contributor to the development of atherosclerosis. Chronic sympathetic hyperactivity can enhance oxidative stress to induce endothelial dysfunction. We determined if renal denervation (RDN), the strategy reducing sympathetic tone, can protect ECs by ameliorating mitochondrial reactive oxygen species (ROS)-induced inflammation to reduce atherosclerosis.Methods and resultsApoE deficient (ApoE-/-) mice were conducted RDN or sham operation before 20-week high-fat diet feeding. Atherosclerosis, EC phenotype and mitochondrial morphology were determined. In vitro, human arterial ECs were treated with norepinephrine to determine the mechanisms for RDN-inhibited endothelial inflammation. RDN reduced atherosclerosis, EC mitochondrial oxidative stress and inflammation. Mechanistically, the chronic sympathetic hyperactivity increased circulating norepinephrine and mitochondrial monoamine oxidase A (MAO-A) activity. MAO-A activation-impaired mitochondrial homeostasis resulted in ROS accumulation and NF-κB activation, thereby enhancing expression of atherogenic and proinflammatory molecules in ECs. It also suppressed mitochondrial function regulator PGC-1α, with involvement of NF-κB and oxidative stress. Inactivation of MAO-A by RDN disrupted the positive-feedback regulation between mitochondrial dysfunction and inflammation, thereby inhibiting EC atheroprone phenotypic alterations and atherosclerosis.ConclusionsThe interplay between MAO-A-induced mitochondrial oxidative stress and inflammation in ECs is a key driver in atherogenesis, and it can be reduced by RDN.
Project description:The endothelium is considered to be relatively independent of the mitochondrial energy supply. The goals of this study were to examine mitochondrial respiratory functions in endothelial cells and isolated mitochondria and to assess the influence of chronic high glucose exposure on the aerobic metabolism of these cells. A procedure to isolate of bioenergetically active endothelial mitochondria was elaborated. Human umbilical vein endothelial cells (EA.hy926 line) were grown in medium containing either 5.5 or 25 mM glucose. The respiratory response to elevated glucose was observed in cells grown in 25 mM glucose for at least 6 days or longer. In EA.hy926 cells, growth in high glucose induced considerably lower mitochondrial respiration with glycolytic fuels, less pronounced with glutamine, and higher respiration with palmitate. The Crabtree effect was observed in both types of cells. High glucose conditions produced elevated levels of cellular Q10, increased ROS generation, increased hexokinase I, lactate dehydrogenase, acyl-CoA dehydrogenase, uncoupling protein 2 (UCP2), and superoxide dismutase 2 expression, and decreased E3-binding protein of pyruvate dehydrogenase expression. In isolated mitochondria, hyperglycaemia induced an increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate (lipid-derived fuels) and a decrease in the oxidation of pyruvate (a mitochondrial fuel); in addition, increased UCP2 activity was observed. Our results demonstrate that primarily glycolytic endothelial cells possess highly active mitochondria with a functioning energy-dissipating pathway (UCP2). High-glucose exposure induces a shift of the endothelial aerobic metabolism towards the oxidation of lipids and amino acids.
Project description:Glucose transport from the blood into the brain is tightly regulated by brain microvascular endothelial cells (BMEC), which also use glucose as their primary energy source. To study how BMEC glucose transport contributes to cerebral glucose hypometabolism in diseases such as Alzheimer's disease, it is essential to understand how these cells metabolize glucose. Human primary BMEC (hpBMEC) can be used for BMEC metabolism studies; however, they have poor barrier function and may not recapitulate in vivo BMEC function. iPSC-derived BMEC-like cells (hiBMEC) are readily available and have good barrier function but may have an underlying epithelial signature. In this study, we examined differences between hpBMEC and hiBMEC glucose metabolism using a combination of dynamic metabolic measurements, metabolic mass spectrometry, RNA sequencing, and Western blots. hiBMEC had decreased glycolytic flux relative to hpBMEC, and the overall metabolomes and metabolic enzyme levels were different between the two cell types. However, hpBMEC and hiBMEC had similar glucose metabolism, including nearly identical glucose labeled fractions of glycolytic and TCA cycle metabolites. Treatment with astrocyte conditioned media and high glucose increased glycolysis in both hpBMEC and hiBMEC, though hpBMEC decreased glycolysis in response to fluvastatin while hiBMEC did not. Together, these results suggest that hiBMEC can be used to model cerebral vascular glucose metabolism, which expands their use beyond barrier models.
Project description:Hyperglycemia-mediated endothelial inflammation participates in the pathogenesis of cardiovascular complications in subjects with diabetes. Previous studies reported that phosphatase and tensin homolog deleted on chromosome ten (PTEN) and SET8 participate in high glucose-mediated endothelial inflammation. In this study, we hypothesize that SET8 regulates PTEN expression, thus contributing to high glucose-mediated vascular endothelial inflammation. Our data indicated that plasma soluble intercellular adhesion molecule-1 (sICAM-1) and endothelial selectin (e-selectin) were increased in patients with diabetes and diabetic rats. PTEN expression was augmented in the peripheral blood mononuclear cells of patients with diabetes and in the aortic tissues of diabetic rats. Our in vitro study indicated that high glucose increased monocyte/endothelial adhesion, endothelial adhesion molecule expression and p65 phosphorylation in human umbilical vein endothelial cells (HUVECs). Moreover, high glucose led to endothelial inflammation via upregulation of PTEN. Furthermore, high glucose inhibited SET8 expression and histone H4 lysine 20 methylation (H4K20me1), a downstream target of SET8. SET8 overexpression reversed the effects of high-glucose treatment. shSET8-mediated endothelial inflammation was counteracted by siPTEN. Furthermore, SET8 was found to interact with FOXO1. siFOXO1 attenuated high glucose-mediated endothelial inflammation. FOXO1 overexpression-mediated endothelial inflammation was counteracted by siPTEN. H4K20me1 and FOXO1 were enriched in the PTEN promoter region. shSET8 increased PTEN promoter activity and augmented the positive effect of FOXO1 overexpression on PTEN promoter activity. Our in vivo study indicated that SET8 was downregulated and FOXO1 was upregulated in the peripheral blood mononuclear cells of patients with diabetes and the aortic tissues of diabetic rats. In conclusion, SET8 interacted with FOXO1 to modulate PTEN expression in vascular endothelial cells, thus contributing to hyperglycemia-mediated endothelial inflammation.