Atomically Dispersed Platinum Modulated by Sulfide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction.
Ontology highlight
ABSTRACT: Catalytically active metals atomically dispersed on supports presents the ultimate atom utilization efficiency and cost-effective pathway for electrocatalyst design. Optimizing the coordination nature of metal atoms represents the advanced strategy for enhancing the catalytic activity and the selectivity of single-atom catalysts (SACs). Here, we designed a transition-metal based sulfide-Ni3S2 with abundant exposed Ni vacancies created by the interaction between chloride ions and the functional groups on the surface of Ni3S2 for the anchoring of atomically dispersed Pt (PtSA-Ni3S2). The theoretical calculation reveals that unique Pt-Ni3S2 support interaction increases the d orbital electron occupation at the Fermi level and leads to a shift-down of the d -band center, which energetically enhances H2O adsorption and provides the optimum H binding sites. Introducing Pt into Ni position in Ni3S2 system can efficiently enhance electronic field distribution and construct a metallic-state feature on the Pt sites by the orbital hybridization between S-3p and Pt-5d for improved reaction kinetics. Finally, the fabricated PtSA-Ni3S2 SAC is supported by Ag nanowires network to construct a seamless conductive three-dimensional (3D) nanostructure (PtSA-Ni3S2@Ag NWs), and the developed catalyst shows an extremely great mass activity of 7.6 A mg-1 with 27-time higher than the commercial Pt/C HER catalyst.
SUBMITTER: Zhou KL
PROVIDER: S-EPMC8224416 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA