Unknown

Dataset Information

0

Characterization of Immune Responses to SARS-CoV-2 and Other Human Pathogenic Coronaviruses Using a Multiplex Bead-Based Immunoassay.


ABSTRACT: Serological assays that simultaneously detect antibodies to multiple targets of SARS-CoV-2 and to other structurally related coronaviruses provide a holistic picture of antibody response patterns. Well-validated multiplex immunoassays are scarce. Here, we evaluated the performance of an 11-plex serological assay capable of detecting antibodies directed to four antigenic targets of SARS-CoV-2 and to S1 proteins of other human pathogenic coronaviruses. We used 620 well-characterized sera (n = 458 seropositive and n = 110 seronegative for SARS-CoV-2 in the pre-SARS-CoV-2 era and n = 52 seronegative for SARS-CoV-2 in the era of SARS-CoV-2) as positive and negative standards. We calculated the sensitivity, specificity, as well as positive and negative predictive values, including a 95% confidence interval. The difference in mean fluorescence intensity (95% CI) was used to assess a potential cross-reaction between antibodies to SARS-CoV-2 and the other coronaviruses. The sensitivity (95% CI) of detecting anti-SARS-CoV-2 antibodies to four antigenic targets ranged from 83.4% (76.7-86.7) to 93.7% (91.0-95.7) and the specificity from 98.2% (93.6-99.8) to 100% (96.7-100). We observed no obvious cross-reaction between anti-SARS-CoV-2 antibodies and antibodies to the other coronaviruses except for SARS-CoV-1. The high sensitivity and specificity warrant a reliable utilization of the assay in population-based seroprevalence surveys or vaccine efficacy studies.

SUBMITTER: Borena W 

PROVIDER: S-EPMC8229387 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8641610 | biostudies-literature
| S-SCDT-10_15252-EMMM_202317580 | biostudies-other
| S-SCDT-EMBOJ-2020-106057 | biostudies-other
| S-SCDT-EMBOJ-2021-107776 | biostudies-other
| S-EPMC8284965 | biostudies-literature
| S-EPMC8757954 | biostudies-literature
| S-SCDT-MSB-2022-10961 | biostudies-other