Unknown

Dataset Information

0

Investigating the Cycling Stability of Fe2WO6 Pseudocapacitive Electrode Materials.


ABSTRACT: The stability upon cycling of Fe2WO6 used as a negative electrode material for electrochemical capacitors was investigated. The material was synthesized using low temperature conditions for the first time (220 °C). The electrochemical study of Fe2WO6 in a 5 M LiNO3 aqueous electrolyte led to a specific and volumetric capacitance of 38 F g-1 and 240 F cm-3 when cycled at 2 mV·s-1, respectively, associated with a minor capacitance loss after 10,000 cycles. In order to investigate this very good cycling stability, both surface and bulk characterization techniques (such as Transmission Electron Microscopy, Mössbauer spectroscopy, and magnetization measurements) were used. Only a slight disordering of the Fe3+ cations was observed in the structure, explaining the good stability of the Fe2WO6 upon cycling. This study adds another pseudocapacitive material to the short list of compounds that exhibit such a behavior up to now.

SUBMITTER: Espinosa-Angeles JC 

PROVIDER: S-EPMC8230245 | biostudies-literature | 2021 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Investigating the Cycling Stability of Fe<sub>2</sub>WO<sub>6</sub> Pseudocapacitive Electrode Materials.

Espinosa-Angeles Julio César JC   Goubard-Bretesché Nicolas N   Quarez Eric E   Payen Christophe C   Sougrati Moulay-Tahar MT   Crosnier Olivier O   Brousse Thierry T  

Nanomaterials (Basel, Switzerland) 20210526 6


The stability upon cycling of Fe<sub>2</sub>WO<sub>6</sub> used as a negative electrode material for electrochemical capacitors was investigated. The material was synthesized using low temperature conditions for the first time (220 °C). The electrochemical study of Fe<sub>2</sub>WO<sub>6</sub> in a 5 M LiNO<sub>3</sub> aqueous electrolyte led to a specific and volumetric capacitance of 38 F g<sup>-1</sup> and 240 F cm<sup>-3</sup> when cycled at 2 mV·s<sup>-1</sup>, respectively, associated with  ...[more]

Similar Datasets

| S-EPMC9079806 | biostudies-literature
| S-EPMC10797589 | biostudies-literature
| S-EPMC4100024 | biostudies-literature
| S-EPMC8539299 | biostudies-literature
| S-EPMC9964479 | biostudies-literature
| S-EPMC9231181 | biostudies-literature
| S-EPMC7118167 | biostudies-literature
| S-EPMC7602191 | biostudies-literature
| S-EPMC9053513 | biostudies-literature
| S-EPMC9000274 | biostudies-literature