Unknown

Dataset Information

0

CT-Based Radiomics Analysis for Preoperative Diagnosis of Pancreatic Mucinous Cystic Neoplasm and Atypical Serous Cystadenomas.


ABSTRACT:

Objectives

To investigate the value of CT-based radiomics analysis in preoperatively discriminating pancreatic mucinous cystic neoplasms (MCN) and atypical serous cystadenomas (ASCN).

Methods

A total of 103 MCN and 113 ASCN patients who underwent surgery were retrospectively enrolled. A total of 764 radiomics features were extracted from preoperative CT images. The optimal features were selected by Mann-Whitney U test and minimum redundancy and maximum relevance method. The radiomics score (Rad-score) was then built using random forest algorithm. Radiological/clinical features were also assessed for each patient. Multivariable logistic regression was used to construct a radiological model. The performance of the Rad-score and the radiological model was evaluated using 10-fold cross-validation for area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy.

Results

Ten screened optimal features were identified and the Rad-score was then built based on them. The radiological model was built based on four radiological/clinical factors. In the 10-fold cross-validation, the Rad-score was proved to be robust and reliable (average AUC: 0.784, sensitivity: 0.847, specificity: 0.745, PPV: 0.767, NPV: 0.849, accuracy: 0.793). The radiological model performed slightly less well in classification (average AUC: average AUC: 0.734 sensitivity: 0.748, specificity: 0.705, PPV: 0.732, NPV: 0.798, accuracy: 0.728.

Conclusions

The CT-based radiomics analysis provided promising performance for preoperatively discriminating MCN from ASCN and showed good potential in improving diagnostic power, which may serve as a novel tool for guiding clinical decision-making for these patients.

SUBMITTER: Xie T 

PROVIDER: S-EPMC8231011 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8672034 | biostudies-literature
| S-EPMC10585572 | biostudies-literature
| S-EPMC8733460 | biostudies-literature
| S-EPMC6031928 | biostudies-literature
| S-EPMC8776667 | biostudies-literature
| S-EPMC6374001 | biostudies-literature
| S-EPMC7058789 | biostudies-literature
| S-EPMC5904051 | biostudies-literature
| S-EPMC8913928 | biostudies-literature
| S-EPMC7690711 | biostudies-literature