Unknown

Dataset Information

0

Experimental signatures of nodeless multiband superconductivity in a [Formula: see text] single crystal.


ABSTRACT: In order to understand the superconducting gap nature of a [Formula: see text] single crystal with [Formula: see text], in-plane thermal conductivity [Formula: see text], in-plane London penetration depth [Formula: see text], and the upper critical fields [Formula: see text] have been investigated. At zero magnetic field, it is found that no residual linear term [Formula: see text] exists and [Formula: see text] follows a power-law [Formula: see text] (T: temperature) with n = 2.66 at [Formula: see text], supporting nodeless superconductivity. Moreover, the magnetic-field dependence of [Formula: see text]/T clearly shows a shoulder-like feature at a low field region. The temperature dependent [Formula: see text] curves for both in-plane and out-of-plane field directions exhibit clear upward curvatures near [Formula: see text], consistent with the shape predicted by the two-band theory and the anisotropy ratio between the [Formula: see text](T) curves exhibits strong temperature-dependence. All these results coherently suggest that [Formula: see text] is a nodeless, multiband superconductor.

SUBMITTER: Kim C 

PROVIDER: S-EPMC8239042 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4410410 | biostudies-other
| S-EPMC8494935 | biostudies-literature
| S-EPMC8595440 | biostudies-literature
| S-EPMC7581753 | biostudies-literature
| S-EPMC8671446 | biostudies-literature
| S-EPMC7498615 | biostudies-literature
| S-EPMC4424041 | biostudies-other
| S-EPMC8184963 | biostudies-literature
| S-EPMC8571276 | biostudies-literature
| S-EPMC9884272 | biostudies-literature