Project description:Purpose of this reviewWe discuss the role of observational studies and cardiac registries during the COVID-19 pandemic. We focus on published cardiac registries and highlight contributions to the field that have had clinical implications.Recent findingsWe included observational studies of COVID-19 patients published in peer-reviewed medical journals with defined inclusion and exclusion criteria, defined study design, and primary outcomes. A PubMed and MEDLINE literature review results in 437 articles, of which 52 include patients with COVID-19 with cardiac endpoints. From July 2020 to December 2021, the average time from last data collected to publication was 8.9 ± 4.1 months, with an increasing trend over time (R = 0.9444, p < 0.0001). Of the 52 articles that met our inclusion criteria, we summarize main findings of 4 manuscripts on stroke, 14 on acute coronary syndrome, 4 on cardiac arrest, 7 on heart failure, 7 on venous thromboembolism, 5 on dysrhythmia, and 11 on different populations at risk for cardiovascular. Registries are cost effective, not disruptive to essential health services, and can be rapidly disseminated with short intervals between last data point collected and publication. In less than 2 years, cardiac registries have filled important gaps in knowledge and informed the care of COVID-19 patients with cardiovascular conditions.
Project description:(1) Objectives: to investigate the main lessons learned from the public health (PH) response to COVID-19, using the global perspective endorsed by the WHO pillars, and understand what countries have learned from their practical actions. (2) Methods: we searched for articles in PubMed and CINAHL from 1 January 2020 to 31 January 2022. 455 articles were included. Inclusion criteria were PH themes and lessons learned from the COVID-19 pandemic. One hundred and forty-four articles were finally included in a detailed scoping review. (3) Findings: 78 lessons learned were available, cited 928 times in the 144 articles. Our review highlighted 5 main lessons learned among the WHO regions: need for continuous coordination between PH institutions and organisations (1); importance of assessment and evaluation of risk factors for the diffusion of COVID-19, identifying vulnerable populations (2); establishment of evaluation systems to assess the impact of planned PH measures (3); extensive application of digital technologies, telecommunications and electronic health records (4); need for periodic scientific reviews to provide regular updates on the most effective PH management strategies (5). (4) Conclusion: lessons found in this review could be essential for the future, providing recommendations for an increasingly flexible, fast and efficient PH response to a healthcare emergency such as the COVID-19 pandemic.
Project description:Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported as a worldwide emergency. Due to the extensiveness of spread and death, it has been declared as a pandemic. This review focused on the current pandemic situation and understanding the prevention and control strategies of COVID-19. Data presented here was by April 3, 2020. A total of 1,016,399 cases of COVID-19 with 53,238 deaths was reported from 204 countries and territories including two international conveyances over the world. After China, most of the new cases were from Europe, particularly Italy acting as the source of importation to many of the other countries around the world. China has obtained success by ascribing control strategies against COVID-19. The implementation of China's strategy, as well as the development of a vaccine, may control the pandemic of COVID-19. Further robust studies are required for a clear understanding of transmission parameters, prevention, and control strategies of SARS-CoV-2. This review paper describes the nature of COVID-19 and the possible ways for the effective controlling of the COVID-19 or similar viral diseases that may come in the future.
Project description:Abstract The COVID?19 pandemic has transformed cardiac surgical practices. Limitations in intensive care resources and personal protective equipment have required many practices throughout the globe to pause elective operations and now slowly resume operations. However, much of cardiac surgery is not elective and patients continue to require surgery on an urgent or emergent basis during the pandemic. This continued need for providing surgical services has introduced several unique considerations ranging from how to prioritize surgery, how to ensure safety for cardiac surgical teams, and how best to resume elective operations to ensure the safety of patients. Additionally, the COVID?19 pandemic has required a careful analysis of how best to carry out heart transplantation, extra?corporeal membrane oxygenation, and congenital heart surgery. In this review, we present the many areas of multidisciplinary consideration, and the lessons learned that have allowed us to carry out cardiac surgery with excellence during the COVID?19 pandemic. As various states experience plateaus, declines, and rises in COVID?19 cases, these considerations are particularly important for cardiac surgical programs throughout the globe.
Project description:The first year of the coronavirus disease 2019 (COVID-19) pandemic has been a year of unprecedented changes, scientific breakthroughs, and controversies. The radiology community has not been spared from the challenges imposed on global healthcare systems. Radiology has played a crucial part in tackling this pandemic, either by demonstrating the manifestations of the virus and guiding patient management, or by safely handling the patients and mitigating transmission within the hospital. Major modifications involving all aspects of daily radiology practice have occurred as a result of the pandemic, including workflow alterations, volume reductions, and strict infection control strategies. Despite the ongoing challenges, considerable knowledge has been gained that will guide future innovations. The aim of this review is to provide the latest evidence on the role of imaging in the diagnosis of the multifaceted manifestations of COVID-19, and to discuss the implications of the pandemic on radiology departments globally, including infection control strategies and delays in cancer screening. Lastly, the promising contribution of artificial intelligence in the COVID-19 pandemic is explored.
Project description:AIM:To describe evolving practices in the provision of mechanical thrombectomy (MT) services across the UK during the COVID-19 pandemic, the responses of and impact on MT teams, and the effects on training. MATERIALS AND METHODS:The UK Neurointerventional Group (UKNG) and the British Society of Neuroradiologists (BSNR) sent out a national survey on 1 May 2020 to all 28 UK neuroscience centres that have the potential capability to perform MT. RESULTS:Responses were received from 27/28 MT-capable centres (96%). Three of the 27 centres do not currently provide MT services. There was a 27.7% reduction in MTs performed during April 2020 compared with the first 3 months of the year. All MT patients in 20/24 centres that responded were considered as COVID-19 suspicious/positive unless or until proven otherwise. Twenty-two of the 24 centres reported delays to the patient pathway. Seventeen of the 24 centres reported that the COVID-19 pandemic had reduced training opportunities for specialist registrars (SpR). Fourteen of the 24 centres reported that the pandemic had hampered their development plans for their local or regional MT service. CONCLUSION:The present survey has highlighted a trend of decreasing cases and delays in the patient pathway during the early stages of the COVID-19 pandemic across UK centres.
Project description:Cancer patients, specifically lung cancer patients, show heightened vulnerability to severe COVID-19 outcomes. The immunological and inflammatory pathophysiological similarities between lung cancer and COVID-19-related ARDS might explain the predisposition of cancer patients to severe COVID-19, while multiple risk factors in lung cancer patients have been associated with worse COVID-19 outcomes, including smoking status, older age, etc. Recent cancer treatments have also been urgently evaluated during the pandemic as potential risk factors for severe COVID-19, with conflicting findings regarding systemic chemotherapy and radiation therapy, while other therapies were not associated with altered outcomes. Given this vulnerability of lung cancer patients for severe COVID-19, the delivery of cancer care was significantly modified during the pandemic to both proceed with cancer care and minimize SARS-CoV-2 infection risk. However, COVID-19-related delays and patients' aversion to clinical settings have led to increased diagnosis of more advanced tumors, with an expected increase in cancer mortality. Waning immunity and vaccine breakthroughs related to novel variants of concern threaten to further impede the delivery of cancer services. Cancer patients have a high risk of severe COVID-19, despite being fully vaccinated. Numerous treatments for early COVID-19 have been developed to prevent disease progression and are crucial for infected cancer patients to minimize severe COVID-19 outcomes and resume cancer care. In this literature review, we will explore the lessons learned during the COVID-19 pandemic to specifically mitigate COVID-19 treatment decisions and the clinical management of lung cancer patients.
Project description:2018 marks the 100-year anniversary of the 1918 influenza pandemic, which killed ~50 million people worldwide. The severity of this pandemic resulted from a complex interplay between viral, host, and societal factors. Here, we review the viral, genetic and immune factors that contributed to the severity of the 1918 pandemic and discuss the implications for modern pandemic preparedness. We address unresolved questions of why the 1918 influenza H1N1 virus was more virulent than other influenza pandemics and why some people survived the 1918 pandemic and others succumbed to the infection. While current studies suggest that viral factors such as haemagglutinin and polymerase gene segments most likely contributed to a potent, dysregulated pro-inflammatory cytokine storm in victims of the pandemic, a shift in case-fatality for the 1918 pandemic toward young adults was most likely associated with the host's immune status. Lack of pre-existing virus-specific and/or cross-reactive antibodies and cellular immunity in children and young adults likely contributed to the high attack rate and rapid spread of the 1918 H1N1 virus. In contrast, lower mortality rate in in the older (>30 years) adult population points toward the beneficial effects of pre-existing cross-reactive immunity. In addition to the role of humoral and cellular immunity, there is a growing body of evidence to suggest that individual genetic differences, especially involving single-nucleotide polymorphisms (SNPs), contribute to differences in the severity of influenza virus infections. Co-infections with bacterial pathogens, and possibly measles and malaria, co-morbidities, malnutrition or obesity are also known to affect the severity of influenza disease, and likely influenced 1918 H1N1 disease severity and outcomes. Additionally, we also discuss the new challenges, such as changing population demographics, antibiotic resistance and climate change, which we will face in the context of any future influenza virus pandemic. In the last decade there has been a dramatic increase in the number of severe influenza virus strains entering the human population from animal reservoirs (including highly pathogenic H7N9 and H5N1 viruses). An understanding of past influenza virus pandemics and the lessons that we have learnt from them has therefore never been more pertinent.
Project description:The recipients of NIH's Clinical and Translational Science Awards (CTSA) have worked for over a decade to build informatics infrastructure in support of clinical and translational research. This infrastructure has proved invaluable for supporting responses to the current COVID-19 pandemic through direct patient care, clinical decision support, training researchers and practitioners, as well as public health surveillance and clinical research to levels that could not have been accomplished without the years of ground-laying work by the CTSAs. In this paper, we provide a perspective on our COVID-19 work and present relevant results of a survey of CTSA sites to broaden our understanding of the key features of their informatics programs, the informatics-related challenges they have experienced under COVID-19, and some of the innovations and solutions they developed in response to the pandemic. Responses demonstrated increased reliance by healthcare providers and researchers on access to electronic health record (EHR) data, both for local needs and for sharing with other institutions and national consortia. The initial work of the CTSAs on data capture, standards, interchange, and sharing policies all contributed to solutions, best illustrated by the creation, in record time, of a national clinical data repository in the National COVID-19 Cohort Collaborative (N3C). The survey data support seven recommendations for areas of informatics and public health investment and further study to support clinical and translational research in the post-COVID-19 era.
Project description:Global health education programs should strive continually to improve the quality of education, increase access, create communities that foster excellence in global health practices, and ensure sustainability. The COVID-19 pandemic forced the University of Minnesota's extensive global health education programs, which includes a decade of hybrid online and in-person programing, to move completely online. We share our experience, a working framework for evaluating global health educational programming, and lessons learned. Over the decades we have moved from a predominantly passive, lecture-based, in-person course to a hybrid online (passive) course with an intensive hands-on 2-week requirement. The pandemic forced us to explore new active online learning models. We retained our on-demand, online passive didactics, which used experts' time efficiently and was widely accessible and well received. In addition, we developed a highly effective synchronous online component that we felt replaced some of the hands-on activities effectively and led us to develop new and innovative "hands-on" experiences. This new, fully online model combining quality asynchronous and synchronous learning provided many unanticipated advantages, such as increasing access while decreasing our carbon footprint dramatically. By sharing our experience, lessons learned, and resources, we hope to inspire other programs likewise to innovate to improve quality, access, community, and sustainability in global health, especially if these innovations can help decrease negative aspects of global health education such as its environmental impact.