Ontology highlight
ABSTRACT: Background
The development and utilization of probiotics had many environmental benefits for replacing antibiotics in animal production. Bacteria in the intestinal mucosa have better adhesion to the host intestinal epithelial cells compared to bacteria in the intestinal contents. In this study, lactic acid bacteria were isolated from the intestinal mucosa of broiler chickens and investigated as the substitution to antibiotic in broiler production.Results
In addition to acid resistance, high temperature resistance, antimicrobial sensitivity tests, and intestinal epithelial cell adhesion, Enterococcus faecium PNC01 (E. faecium PNC01) was showed to be non-cytotoxic to epithelial cells. Draft genome sequence of E. faecium PNC01 predicted that it synthesized bacteriocin to perform probiotic functions and bacteriocin activity assay showed it inhibited Salmonella typhimurium from invading intestinal epithelial cells. Diet supplemented with E. faecium PNC01 increased the ileal villus height and crypt depth in broiler chickens, reduced the relative length of the cecum at day 21, and reduced the relative length of jejunum and ileum at day 42. Diet supplemented with E. faecium PNC01 increased the relative abundance of Firmicutes and Lactobacillus, decreased the relative abundance of Bacteroides in the cecal microbiota.Conclusion
E. faecium PNC01 replaced antibiotics to reduce the feed conversion rate. Furthermore, E. faecium PNC01 improved intestinal morphology and altered the composition of microbiota in the cecum to reduce feed conversion rate. Thus, it can be used as an alternative for antibiotics in broiler production to avoid the adverse impact of antibiotics by altering the gut microbiota.
SUBMITTER: He Y
PROVIDER: S-EPMC8240220 | biostudies-literature |
REPOSITORIES: biostudies-literature