Project description:The SARS-CoV-2 antigen-detecting rapid diagnostic test (Ag-RDTs) is an easy-to-use diagnostic tool to identify the contagious individuals and reduce the new infections. However, to be effective, Ag-RDTs require the detection of distinct variants of concern (VOC) with high analytical sensitivity. Here, we found that the VOC diverge at the nucleocapsid protein used by four commercial Ag-RDTs for the viral detection. Relative to the original D614G variant, there was a 10-fold loss of detection for the Delta and Alpha variants in certain Ag-RDTs, a reduction above the threshold required to isolate the viable virus. However, Beta and Omicron variants did not lose the detection capacity. As the new VOC arise, successful contact tracing requires continuous monitoring of Ag-RDTs performance.
Project description:The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.
Project description:ObjectiveTo assess the diagnostic performance of lateral flow immunochromatographic assays (LFAs) of 4 different manufacturers to identify SARS-CoV-2 antibodies (IgM, IgG, or total), comparing them with the nucleic acid amplification test (NAAT) or the clinical defined test (definite or probable SARS-CoV-2 infection, respectively).MethodsOne hundred nineteen serum samples were randomly selected by convenience and distributed in the following groups: (1) group with SARS-CoV-2 infection (n = 82; RT-qPCR positive [definite, n = 70] and probable [n = 12]); (2) other diseases (n = 27; other viruses identified [n = 8] and SARS of other etiologies [n = 19]); and (3) healthy control group (n = 10). LFAs of 4 manufacturers were compared: MedTest Coronavirus (COVID-19) IgG/IgM (MedLevensohn, Brazil); COVID-19 IgG/IgM ECO Test (Ecodiagnóstica, Brazil); Camtech COVID-19 IgM/IgG Rapid Test Kit (Camtech Diagnostics Pte Ltd, Singapore); and 1-Step COVID-19 Test for total antibodies (Guangzhou Wondfo Biotech Co., China).ResultsThe 4 tests studied showed high diagnostic performance characteristics for the diagnoses of definite or probable SARS-CoV-2 infection. The best measures were for the Wondfo test: sensitivity (86.59%; 95% CI: 77.26-93.11%), specificity (100%; 90.51-100%), DOR (257; 60-1,008), LR+ (33.43; 4.82-231.85), LR- (0.13; 0.08-0.23), accuracy (90.76%; 84.06-95.29%), and Matthews correlation coefficient (MCC) 0.82. Although considering only the probable SARS-CoV-2 infection (PCR-) cases, all the kits studied showed limited values.ConclusionOur data demonstrate the excellent performance of LFA for the diagnoses of definite or probable SARS-CoV-2 infection. There was substantial heterogeneity in sensitivities of IgM and IgG antibodies among the different kits. LFA tests cannot replace molecular diagnostics but should be used as an additional screening tool.
Project description:ObjectivesAntigen rapid diagnostic tests (Ag-RDT) have been developed as reliable tools to control the SARS-CoV-2 pandemic. The objective of our study was to evaluate the diagnostic performance of two Ag-RDTs.MethodsWe evaluated CerTest SARS-CoV-2 Ag One Step Card Test and Panbio COVID-19 Ag Rapid Test Device Ag-RDTs. We included 320 nasopharyngeal samples: 150 PCR negative samples to assess the specificity and 170 PCR positive samples to evaluate the sensitivity. We also evaluated their sensitivity according to cycle threshold (Ct) values and the time from the onset of symptoms. Tests were compared using the McNemar's test and agreement was evaluated using the kappa score (k).ResultsBoth Ag-RDTs showed a specificity of 100 %. Overall sensitivity was 53.5 % for CerTest and 60.0 % for Panbio. For samples with Ct≤ 25, sensitivity was 94.0 % for CerTest and 96.4 % for Panbio (p = 0.500). Regarding samples with Ct>25, sensitivity was 14.0 % for CerTest and 24.4 % for Panbio (p = 0.004). Sensitivity for samples within the first 5 days after the onset of symptoms were 84.8 % for CerTest and 91.3 % for Panbio (p = 0.250) and notably decreased for samples taken after the fifth day. Both Ag-RDTs showed an excellent agreement between them (agreement = 96.7 %, k = 0.920). Agreement with PCR was also excellent for high viral load samples (Ct<25) for CerTest (98.0 %, k = 0.954) and Panbio (98.8 %, k = 0.973).ConclusionsCerTest SARS-CoV-2 and Panbio COVID-19 Ag showed excellent performance and agreement results for samples with high viral loads (Ct ≤ 25) or samples taken within the first 5 days after the onset of symptoms.
Project description:Rapid Antigen Tests (RAT) have become an invaluable tool for combating the COVID-19 pandemic. However, concerns have been raised regarding the ability of existing RATs to effectively detect emerging SARS-CoV-2 variants. We compared the performance of eight commercially available, emergency use authorized RATs against the Delta and Omicron SARS-CoV-2 variants using individual patient and serially diluted pooled clinical samples. The RATs exhibited lower sensitivity for Omicron samples when using PCR Cycle threshold (C T ) value (a proxy for RNA concentration) as the comparator. Interestingly, however, they exhibited similar sensitivity for Omicron and Delta samples when using quantitative antigen concentration as the comparator. We further found that the Omicron samples had lower ratios of antigen to RNA, which offers a potential explanation for the apparent lower sensitivity of RATs for that variant when using C T value as a reference. Our findings underscore the complexity in assessing RAT performance against emerging variants and highlight the need for ongoing evaluation in the face of changing population immunity and virus evolution.
Project description:The clinical performance of two rapid antigen tests for the diagnosis of Severe Acute Respiratory Coronavirus (SARS-CoV-2) were regionally evaluated in East African populations. Swabs were collected from 1,432 individuals from five Partner States of the East African Community (Tanzania, Uganda, Burundi, Rwanda and South Sudan). The two rapid antigen tests (Bionote NowCheck COVID-19 Ag and SD Biosensor STANDARD Q COVID-19 Ag) were evaluated against the detection of SARS-CoV-2 RNA by the Reverse Transcription PCR (RT-PCR) gold standard. Of the concordant results with both RT-PCR and rapid antigen test data (862 for Bionote and 852 for SD Biosensor), overall clinical sensitivity was 60% and 50% for the Bionote NowCheck and the SD Biosensor STANDARD Q, respectively. Stratification by viral load, including samples with RT-PCR cycle thresholds (Ct) of <25, improved sensitivity to 90% for both rapid diagnostic tests (RDTs). Overall specificity was good at 99% for both antigen tests. Taken together, the clinical performance of both Ag-RDTs in real world settings within the East African target population was lower than has been reported elsewhere and below the acceptable levels for sensitivity of >80%, as defined by the WHO. Therefore, the rapid antigen test alone should not be used for diagnosis but could be used as part of an algorithm to identify potentially infectious individuals with high viral load. IMPORTANCE Accurate diagnostic tests are essential to both support the management and containment of outbreaks, as well as inform appropriate patient care. In the case of the SARS-CoV-2 pandemic, antigen Rapid Diagnostic Tests (Ag-RDTs) played a major role in this function, enabling widespread testing by untrained individuals, both at home and within health facilities. In East Africa, a number of SARS-CoV-2 Ag-RDTs are available; however, there remains little information on their true test performance within the region, in the hands of the health workers routinely carrying out SARS-CoV-2 diagnostics. This study contributes test performance data for two commonly used SARS-CoV-2 Ag-RDTs in East Africa, which will help inform the use of these RDTs within the region.
Project description:The diagnosis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection relies on the detection of viral RNA by real-time reverse transcription polymerase chain reaction (rRT-PCR) performed with respiratory specimens, especially nasopharyngeal swabs. However, this procedure requires specialized medical personnel, centralized laboratory facilities, and time to provide results (from several hours up to 1 d). In addition, there is a non-negligible risk of viral transmission for the operator who performs the procedure. For these reasons, several studies have suggested the use of other body fluids, including saliva, for the detection of SARS-CoV-2. The use of saliva as a diagnostic specimen has numerous advantages: it is easily self-collected by the patient with almost no discomfort, it does not require specialized health care personnel for its management, and it reduces the risks for the operator. In the past few months, several scientific papers, media, and companies have announced the development of new salivary tests to detect SARS-CoV-2 infection. Posterior oropharyngeal saliva should be distinguished from oral saliva, since the former is a part of respiratory secretions, while the latter is produced by the salivary glands, which are outside the respiratory tract. Saliva can be analyzed through standard (rRT-PCR) or rapid molecular biology tests (direct rRT-PCR without extraction), although, in a hospital setting, these procedures may be performed only in addition to nasopharyngeal swabs to minimize the incidence of false-negative results. Conversely, the promising role of saliva in the diagnosis of SARS-CoV-2 infection is highlighted by the emergence of point-of-care technologies and, most important, point-of-need devices. Indeed, these devices can be directly used in workplaces, airports, schools, cinemas, and shopping centers. An example is the recently described Rapid Salivary Test, an antigen test based on the lateral flow assay, which detects the presence of the virus by identifying the spike protein in the saliva within a few minutes.
Project description:ImportanceVariants of SARS-CoV-2 have sequence variations in the viral genome that may alter the accuracy of rapid diagnostic tests.ObjectiveTo assess the analytical and clinical accuracy of 2 rapid diagnostic tests for detecting SARS-CoV-2 during 3 phases of variants.Design, setting, and participantsThis diagnostic study included participants aged 18 years or older who reported onset of COVID-19-like symptoms within the prior 5 days and were tested at multiple COVID-19 testing locations in King County, Washington, from February 17, 2021, to January 11, 2022, during 3 distinct phases of SARS-CoV-2 infection (pre-Delta, Delta, and Omicron).InterventionsTwo anterior nasal swab specimens were collected from each participant-1 for onsite testing by the SCoV-2 Ag Detect Rapid Self-Test and 1 for reverse transcriptase-polymerase chain reaction (RT-PCR) testing.Main outcomes and measuresThe analytical limit of detection of the 2 rapid diagnostic tests (SCoV-2 Ag Detect Rapid Self-Test and BinaxNOW COVID-19 Ag Card) was assessed using Omicron (B.1.1.529/BA.1), Delta (B.1.617.2), and a wild-type (USA-WA1/2020) variant. Diagnostic sensitivity and specificity of clinical testing for the rapid antigen tests were compared with that of RT-PCR testing.ResultsA total of 802 participants were enrolled (mean [SD] age, 37.3 [13.3] years; 467 [58.2%] female), 424 (52.9%) of whom had not received COVID-19 vaccination and presented a median of 2 days (IQR, 1-3 days) from symptom onset. Overall, no significant differences were found in the analytical limit of detection or clinical diagnostic accuracy of rapid antigen testing across SARS-CoV-2 variants. The estimated limit of detection for both rapid nucleocapsid antigen tests was at or below a 50% tissue culture infectious dose of 62.5, and the positive percent agreement of the SCoV-2 Ag Detect Rapid Self-Test ranged from 81.2% (95% CI, 69.5%-89.9%) to 90.7% (95% CI, 77.9%-97.4%) across the 3 phases of variants. The diagnostic sensitivity increased for nasal swabs with a lower cycle threshold by RT-PCR, which correlates with a higher viral load.Conclusions and relevanceIn this diagnostic study, analytical and clinical performance data demonstrated accuracy of 2 rapid antigen tests among adults with COVID-19 symptoms across 3 phases of SARS-CoV-2 variants. The findings suggest that home-based rapid antigen testing programs may be an important intervention to reduce global SARS-CoV-2 transmission.
Project description:Accurate and reliable forecasting of emerging dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants enables policymakers and vaccine makers to get prepared for future waves of infections. The last three waves of SARS-CoV-2 infections caused by dominant variants Omicron (BA.1), BA.2, and BA.4/BA.5 were accurately foretold by our artificial intelligence (AI) models built with biophysics, genotyping of viral genomes, experimental data, algebraic topology, and deep learning. Based on newly available experimental data, we analyzed the impacts of all possible viral spike (S) protein receptor-binding domain (RBD) mutations on the SARS-CoV-2 infectivity. Our analysis sheds light on viral evolutionary mechanisms, i.e., natural selection through infectivity strengthening and antibody resistance. We forecast that BA.2.10.4, BA.2.75, BQ.1.1, and particularly, BA.2.75+R346T, have high potential to become new dominant variants to drive the next surge.
Project description:Introduction: For the COVID-19 (SARS-CoV-2) response, COVID-19 antigen (Ag), and antibody (Ab) rapid diagnostic tests (RDTs) are expected to complement central molecular testing particularly in low-resource settings. The present review assesses requirements for implementation of COVID-19 RDTs in sub-Saharan Africa. Methods: Review of PubMed-published articles assessing COVID-19 RDTs complemented with Instructions for Use (IFU) of products. Results: In total 47 articles on two COVID-19 Ag RDTs and 54 COVID-19 Ab RDTs and IFUs of 20 COVID-19 Ab RDTs were retrieved. Only five COVID-19 Ab RDTs (9.3%) were assessed with capillary blood sampling at the point-of-care; none of the studies were conducted in sub-Saharan Africa. Sampling: Challenges for COVID-19 Ag RDTs include nasopharyngeal sampling (technique, biosafety) and sample stability; for COVID-19 Ab RDTs equivalence of whole blood vs. plasma/serum needs further validation (assessed for only eight (14.8%) products). Sensitivity-Specificity: sensitivity of COVID-19 Ag and Ab RDTs depend on viral load (antigen) and timeframe (antibody), respectively; COVID-19 Ab tests have lower sensitivity compared to laboratory test platforms and the kinetics of IgM and IgG are very similar. Reported specificity was high but has not yet been assessed against tropical pathogens. Kit configuration: For COVID-19 Ag RDTs, flocked swabs should be added to the kit; for COVID-19 Ab RDTs, finger prick sampling materials, transfer devices, and controls should be added (currently only supplied in 15, 5, and 1/20 products). Usability and Robustness: some COVID-19 Ab RDTs showed high proportions of faint lines (>40%) or invalid results (>20%). Shortcomings were reported for buffer vials (spills, air bubbles) and their instructions for use. Stability: storage temperature was ≤ 30°C for all but one RDT, in-use and result stability were maximal at 1 h and 30 min, respectively. Integration in the healthcare setting requires a target product profile, landscape overview of technologies, certified manufacturing capacity, a sustainable market, and a stringent but timely regulation. In-country deployment depends on integration in the national laboratory network. Discussion/Conclusion: Despite these limitations, successful implementation models in triage, contact tracing, and surveillance have been proposed, in particular for COVID-19 Ab RDTs. Valuable experience is available from implementation of other disease-specific RDTs in sub-Saharan Africa.