Reproducibility of automated habenula segmentation via deep learning in major depressive disorder and normal controls with 7 Tesla MRI.
Ontology highlight
ABSTRACT: The habenula is one of the most important brain regions for investigating the etiology of psychiatric diseases such as major depressive disorder (MDD). However, the habenula is challenging to delineate with the naked human eye in brain imaging due to its low contrast and tiny size, and the manual segmentation results vary greatly depending on the observer. Therefore, there is a great need for automatic quantitative analytic methods of the habenula for psychiatric research purposes. Here we propose an automated segmentation and volume estimation method for the habenula in 7 Tesla magnetic resonance imaging based on a deep learning-based semantic segmentation network. The proposed method, using the data of 69 participants (33 patients with MDD and 36 normal controls), achieved an average precision, recall, and dice similarity coefficient of 0.869, 0.865, and 0.852, respectively, in the automated segmentation task. Moreover, the intra-class correlation coefficient reached 0.870 in the volume estimation task. This study demonstrates that this deep learning-based method can provide accurate and quantitative analytic results of the habenula. By providing rapid and quantitative information on the habenula, we expect our proposed method will aid future psychiatric disease studies.
SUBMITTER: Lim SH
PROVIDER: S-EPMC8241874 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA