Leveraging network analysis to evaluate biomedical named entity recognition tools.
Ontology highlight
ABSTRACT: The ever-growing availability of biomedical text sources has resulted in a boost in clinical studies based on their exploitation. Biomedical named-entity recognition (bio-NER) techniques have evolved remarkably in recent years and their application in research is increasingly successful. Still, the disparity of tools and the limited available validation resources are barriers preventing a wider diffusion, especially within clinical practice. We here propose the use of omics data and network analysis as an alternative for the assessment of bio-NER tools. Specifically, our method introduces quality criteria based on edge overlap and community detection. The application of these criteria to four bio-NER solutions yielded comparable results to strategies based on annotated corpora, without suffering from their limitations. Our approach can constitute a guide both for the selection of the best bio-NER tool given a specific task, and for the creation and validation of novel approaches.
SUBMITTER: Garcia Del Valle EP
PROVIDER: S-EPMC8242017 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA