Project description:ObjectivesCoronavirus Disease 2019 (COVID-19) is a highly infectious viral pandemic that has claimed the lives of millions. Personal protective equipment (PPE) may reduce the risk of transmission for health care workers (HCWs), especially in the emergency setting. This study aimed to compare the adherence to PPE donning and doffing protocols in the Emergency Department (ED) vs designated COVID-19 wards and score adherence according to the steps in our protocol.DesignPrior to managing COVID-19 patients, mandatory PPE training was undertaken for all HCWs. HCWs were observed donning or doffing COVID-19 restricted areas.SettingDonning and doffing was observed in COVID-19 designated Emergency department and compared to COVID-19 positive wards.ParticipantsAll HCWs working in the aforementioned wards during the time of observation.ResultsWe observed 107 donning and doffing procedures (30 were observed in the ED). 50% HCWs observed donned PPE correctly and 37% doffed correctly. The ED had a significantly lower mean donning score (ED: 78%, Internal: 95% ICU: 96%, p < 0.001); and a significantly lower mean doffing score (ED: 72%, Internal: 85% ICU: 91%, p = 0.02).ConclusionsAs hypothesized, HCWs assigned to the designated ED wing made more protocol deviations compared with HCWs positive COVID-19 wards. Time management, acuity, lack of personnel, stress and known COVID-19 status may explain the lesser adherence to donning and doffing protocols. Further studies to assess the correlation between protocol deviations in use of PPE and morbidity as well as improvement implementations are required. Resources should be invested to ensure PPE is properly used.
Project description:During the doffing of personal protective equipment (PPE), pathogens can be transferred from the PPE to the bodies of healthcare workers (HCWs), putting HCWs and patients at risk of exposure and infection. PPE doffing practices of HCWs who cared for patients with viral respiratory infections were observed at an acute care hospital from March 2017 to April 2018. A trained observer recorded doffing performance of HCWs inside the patient rooms using a pre-defined checklist based on the Centers for Disease Control and Prevention (CDC) guideline. Doffing practices were observed 162 times during care of 52 patients infected with respiratory viral pathogens. Out of the 52 patients, 30 were in droplet and contact isolation, 21 were in droplet isolation, and 1 was in contact isolation. Overall, 90% of observed doffing was incorrect, with respect to the doffing sequence, doffing technique, or use of appropriate PPE. Common errors were doffing gown from the front, removing face shield of the mask, and touching potentially contaminated surfaces and PPE during doffing. Deviations from the recommended PPE doffing protocol are common and can increase potential for contamination of the HCW's clothing or skin after providing care. There is a clear need to change the approach used to training HCWs in PPE doffing practices.
Project description:Background: Due to the ongoing coronavirus disease 2019 (COVID-19) pandemic, a need for precise donning and doffing protocols for personal protective equipment (PPE) among healthcare infrastructures is paramount. Procedures involving the cardiac catheterization laboratory (CCL) are routinely non-aerosolizing but have the potential for rapid patient deterioration, creating the need for aerosolizing generating procedures. Multiple societal and governmental guidelines on the use of PPE during medical procedures are available on Internet websites; however, there is limited literature available in peer-reviewed formats in this context. This study aims to provide an overview of current PPE donning and doffing protocols specific to the catheterization laboratory. Methods: A series of internet searches regarding donning and doffing of PPE in the CCL including published articles and internet protocols were compiled and compared using Pubmed.gov, Google.com, www.twitter.com, and www.youtube.com. Results: Most institutions used N95 masks, shoe covers, at least one head covering, face shield or goggles, two pairs of gloves, and inner and outer gowns. Doffing variation was greater than donning. Doffing has the potential to contaminate the healthcare worker (HCW), and therefore, this step of PPE management requires further study. Common steps in temporal priority included cleaning of gloved hands, removal of outer (or only) gown, removal of outer gloves, repeat gloved hand cleaning, removal of facial PPE last, and a final non-gloved hand cleaning. Conclusions: This analysis provides a summary of commonly used practices that may be considered when designing CCL-specific PPE protocols. Analysis of consistent steps from the literature led the authors to formulate a suggested protocol for CCL HCWs when performing procedures on patients with confirmed or suspected/unknown COVID-19.
Project description:BackgroundHealthcare workers (HCWs) use personal protective equipment (PPE) in Ebola virus disease (EVD) situations. However, preventing the contamination of HCWs and the environment during PPE removal crucially requires improved strategies. This study aimed to compare the efficacy of three PPE ensembles, namely, Hospital Authority (HA) Standard Ebola PPE set (PPE1), Dupont Tyvek Model, style 1422A (PPE2), and HA isolation gown for routine patient care and performing aerosol-generating procedures (PPE3) to prevent EVD transmission by measuring the degree of contamination of HCWs and the environment.MethodsA total of 59 participants randomly performed PPE donning and doffing. The trial consisted of PPE donning, applying fluorescent solution on the PPE surface, PPE doffing of participants, and estimation of the degree of contamination as indicated by the number of fluorescent stains on the working clothes and environment. Protocol deviations during PPE donning and doffing were monitored.ResultsPPE2 and PPE3 presented higher contamination risks than PPE1. Environmental contaminations such as those originating from rubbish bin covers, chairs, faucets, and sinks were detected. Procedure deviations were observed during PPE donning and doffing, with PPE1 presenting the lowest overall deviation rate (%) among the three PPE ensembles (p < 0.05).ConclusionContamination of the subjects' working clothes and surrounding environment occurred frequently during PPE doffing. Procedure deviations were observed during PPE donning and doffing. Although PPE1 presented a lower contamination risk than PPE2 and PPE3 during doffing and protocol deviations, the design of PPE1 can still be further improved. Future directions should focus on designing a high-coverage-area PPE with simple ergonomic features and on evaluating the doffing procedure to minimise the risk of recontamination. Regular training for users should be emphasised to minimise protocol deviations, and in turn, guarantee the best protection to HCWs.
Project description:The use of personal protective equipment (PPE) has been considered the most effective way to avoid the contamination of healthcare workers by different microorganisms, including SARS-CoV-2. A spray disinfection technology (chamber) was developed, and its efficacy in instant decontamination of previously contaminated surfaces was evaluated in two exposure times. Seven test microorganisms were prepared and inoculated on the surface of seven types of PPE (respirator mask, face shield, shoe, glove, cap, safety glasses and lab coat). The tests were performed on previously contaminated PPE using a manikin with a motion device for exposure to the chamber with biocidal agent (sodium hypochlorite) for 10 and 30s. In 96.93% of the experimental conditions analyzed, the percentage reduction was >99% (the number of viable cells found on the surface ranged from 4.3x106 to <10 CFU/mL). The samples of E. faecalis collected from the glove showed the lowest percentages reduction, with 86.000 and 86.500% for exposure times of 10 and 30 s, respectively. The log10 reduction values varied between 0.85 log10 (E. faecalis at 30 s in glove surface) and 9.69 log10 (E. coli at 10 and 30 s in lab coat surface). In general, E. coli, S. aureus, C. freundii, P. mirabilis, C. albicans and C. parapsilosis showed susceptibility to the biocidal agent under the tested conditions, with >99% reduction after 10 and 30s, while E. faecalis and P. aeruginosa showed a lower susceptibility. The 30s exposure time was more effective for the inactivation of the tested microorganisms. The results show that the spray disinfection technology has the potential for instant decontamination of PPE, which can contribute to an additional barrier for infection control of healthcare workers in the hospital environment.
Project description:Background:Doffing protocols for personal protective equipment (PPE) are critical for keeping healthcare workers (HCWs) safe during care of patients with Ebola virus disease. We assessed the relationship between errors and self-contamination during doffing. Methods:Eleven HCWs experienced with doffing Ebola-level PPE participated in simulations in which HCWs donned PPE marked with surrogate viruses (?6 and MS2), completed a clinical task, and were assessed for contamination after doffing. Simulations were video recorded, and a failure modes and effects analysis and fault tree analyses were performed to identify errors during doffing, quantify their risk (risk index), and predict contamination data. Results:Fifty-one types of errors were identified, many having the potential to spread contamination. Hand hygiene and removing the powered air purifying respirator (PAPR) hood had the highest total risk indexes (111 and 70, respectively) and number of types of errors (9 and 13, respectively). ?6 was detected on 10% of scrubs and the fault tree predicted a 10.4% contamination rate, likely occurring when the PAPR hood inadvertently contacted scrubs during removal. MS2 was detected on 10% of hands, 20% of scrubs, and 70% of inner gloves and the predicted rates were 7.3%, 19.4%, 73.4%, respectively. Fault trees for MS2 and ?6 contamination suggested similar pathways. Conclusions:Ebola-level PPE can both protect and put HCWs at risk for self-contamination throughout the doffing process, even among experienced HCWs doffing with a trained observer. Human factors methodologies can identify error-prone steps, delineate the relationship between errors and self-contamination, and suggest remediation strategies.
Project description:BackgroundMore than 28 000 people were infected with Ebola virus during the 2014-2015 West African outbreak, resulting in more than 11 000 deaths. Better methods are needed to reduce the risk of self-contamination while doffing personal protective equipment (PPE) to prevent pathogen transmission.MethodsA set of interventions based on previously identified failure modes was designed to mitigate the risk of self- contamination during PPE doffing. These interventions were tested in a randomized controlled trial of 48 participants with no prior experience doffing enhanced PPE. Contamination was simulated using a fluorescent tracer slurry and fluorescent polystyrene latex spheres (PLSs). Self-contamination of scrubs and skin was measured using ultraviolet light visualization and swabbing followed by microscopy, respectively. Doffing sessions were videotaped and reviewed to score standardized teamwork behaviors.ResultsParticipants in the intervention group contaminated significantly fewer body sites than those in the control group (median [interquartile range], 6 [3-8] vs 11 [6-13], P = .002). The median contamination score was lower for the intervention group than the control group when measured by ultraviolet light visualization (23.15 vs 64.45, P = .004) and PLS swabbing (72.4 vs 144.8, P = .001). The mean teamwork score was greater in the intervention group (42.2 vs 27.5, P < .001).ConclusionsAn intervention package addressing the PPE doffing task, tools, environment, and teamwork skills significantly reduced the amount of self-contamination by study participants. These elements can be incorporated into PPE guidance and training to reduce the risk of pathogen transmission.
Project description:BackgroundFluorescent tracers are often used with ultraviolet lights to visibly identify healthcare worker self-contamination after doffing of personal protective equipment (PPE). This method has drawbacks, as it cannot detect pathogen-sized contaminants nor airborne contamination in subjects' breathing zones.MethodsA contamination detection/quantification method was developed using 2-µm polystyrene latex spheres (PSLs) to investigate skin contamination (via swabbing) and potential inhalational exposure (via breathing zone air sampler). Porcine skin coupons were used to estimate the PSL swabbing recovery efficiency and limit of detection (LOD). A pilot study with 5 participants compared skin contamination levels detected via the PSL vs fluorescent tracer methods, while the air sampler quantified potential inhalational exposure to PSLs during doffing.ResultsAverage PSL skin swab recovery efficiency was 40% ± 29% (LOD = 1 PSL/4 cm2 of skin). In the pilot study, all subjects had PSL and fluorescent tracer skin contamination. Two subjects had simultaneously located contamination of both types on a wrist and hand. However, for all other subjects, the PSL method enabled detection of skin contamination that was not detectable by the fluorescent tracer method. Hands/wrists were more commonly contaminated than areas of the head/face (57% vs 23% of swabs with PSL detection, respectively). One subject had PSLs detected by the breathing zone air sampler.ConclusionsThis study provides a well-characterized method that can be used to quantitate levels of skin and inhalational contact with simulant pathogen particles. The PSL method serves as a complement to the fluorescent tracer method to study PPE doffing self-contamination.