ABSTRACT: The aim of the present study was to detect copy number variations (CNVs) related to tumour progression and metastasis of urothelial carcinoma through whole-genome scanning. A total of 30 bladder cancer samples staged from pTa to pT4 were included in the study. DNA was extracted from freshly frozen tissue via standard phenol-chloroform extraction and CNV analysis was performed on two alternative platforms (CytoChip Oligo aCGH, 4x44K and Infinium OncoArray-500K BeadChip; Illumina, Inc.). Data were analysed with BlueFuse Multi software and Karyostudio, respectively. The results highlight the role of genomic imbalances in regions containing genes with metastatic and proliferative potential for tumour invasion. A high level of genomic instability in uroepithelial tumours was observed and a total of 524 aberrations, including 175 losses and 349 gains, were identified. The most prevalent genetic imbalances affected the following regions: 1p, 1q, 2q, 4p, 4q, 5p, 5q, 6p, 6q, 7q, 8q, 9p, 9q, 10p, 10q, 11q, 13q and 17q. High-grade tumours more frequently harboured genomic imbalances (n=227) than low-grade tumours (n=103). A total of 36 CNVs in high-grade bladder tumours were detected in chromosomes 1-5, 8-11, 14, 17, 19 and 20. Furthermore, five loss of heterozygosity variants containing 176 genes were observed in high-grade bladder cancer and may be used as potential targets for precision therapy. Revealing specific chromosomal regions related to the metastatic potential of uroepithelial tumours may lay a foundation for implementing molecular CNV profiling of bladder tumours as part of a routine progression risk estimation strategy, thus expanding the personalized therapeutic approach.