Project description:BACKGROUNDUnderstanding outcomes and immunologic characteristics of cellular therapy recipients with SARS-CoV-2 is critical to performing these potentially life-saving therapies in the COVID-19 era. In this study of recipients of allogeneic (Allo) and autologous (Auto) hematopoietic cell transplant and CD19-directed chimeric antigen receptor T cell (CAR T) therapy at Memorial Sloan Kettering Cancer Center, we aimed to identify clinical variables associated with COVID-19 severity and assess lymphocyte populations.METHODSWe retrospectively investigated patients diagnosed between March 15, 2020, and May 7, 2020. In a subset of patients, lymphocyte immunophenotyping, quantitative real-time PCR from nasopharyngeal swabs, and SARS-CoV-2 antibody status were available.RESULTSWe identified 77 patients with SARS-CoV-2 who were recipients of cellular therapy (Allo, 35; Auto, 37; CAR T, 5; median time from cellular therapy, 782 days; IQR, 354-1611 days). Overall survival at 30 days was 78%. Clinical variables significantly associated with the composite endpoint of nonrebreather or higher oxygen requirement and death (n events = 25 of 77) included number of comorbidities (HR 5.41, P = 0.004), infiltrates (HR 3.08, P = 0.032), and neutropenia (HR 1.15, P = 0.04). Worsening graft-versus-host disease was not identified among Allo recipients. Immune profiling revealed reductions and rapid recovery in lymphocyte populations across lymphocyte subsets. Antibody responses were seen in a subset of patients.CONCLUSIONIn this series of Allo, Auto, and CAR T recipients, we report overall favorable clinical outcomes for patients with COVID-19 without active malignancy and provide preliminary insights into the lymphocyte populations that are key for the antiviral response and immune reconstitution.FUNDINGNIH grant P01 CA23766 and NIH/National Cancer Institute grant P30 CA008748.
Project description:Allogeneic haematopoietic stem cell transplantation currently represents the primary potentially curative treatment for cancers of the blood and bone marrow. While relapse occurs in approximately 30% of patients, few risk-modifying genetic variants have been identified. The present study evaluates the predictive potential of patient genetics on relapse risk in a genome-wide manner. We studied 151 graft recipients with HLA-matched sibling donors by sequencing the whole-exome, active immunoregulatory regions, and the full MHC region. To assess the predictive capability and contributions of SNPs and INDELs, we employed machine learning and a feature selection approach in a cross-validation framework to discover the most informative variants while controlling against overfitting. Our results show that germline genetic polymorphisms in patients entail a significant contribution to relapse risk, as judged by the predictive performance of the model (AUC = 0.72 [95% CI: 0.63-0.81]). Furthermore, the top contributing variants were predictive in two independent replication cohorts (n = 258 and n = 125) from the same population. The results can help elucidate relapse mechanisms and suggest novel therapeutic targets. A computational genomic model could provide a step toward individualized prognostic risk assessment, particularly when accompanied by other data modalities.
Project description:Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a well-established curative treatment for various malignant hematological diseases. However, its clinical success is substantially limited by major complications including graft-vs.-host disease (GVHD) and relapse of the underlying disease. Although these complications are known to lead to significant morbidity and mortality, standardized pathways for risk stratification of patients undergoing allo-HSCT are lacking. Recent advances in the development of diagnostic and prognostic tools have allowed the identification of biomarkers in order to predict outcome after allo-HSCT. This review will provide a summary of clinically relevant biomarkers that have been studied to predict the development of acute GVHD, the responsiveness of affected patients to immunosuppressive treatment and the risk of non-relapse mortality. Furthermore, biomarkers associated with increased risk of relapse and subsequent mortality will be discussed.
Project description:The aim of this study is to assess the Fecal Microbiota Transplantation (FMT) efficacy in the prevention of allogeneic hematopoietic stem cell transplantation (allo-HSCT) complications and particularly Graft versus Host Disease (GvHD).
The hypothesis of this study is that allogeneic FMT may improve outcomes of these patients.
Project description:Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents a potentially curative strategy for many oncological and non-oncological diseases, but it is associated with marked morbidity and mortality. The disruption of gut microbiota (GM) eubiosis has been linked to major allo-HSCT complications, including infections and acute graft vs. host disease (aGvHD), and correlates with mortality. This increasing knowledge on the role of the GM in the allo-HSCT procedure has led to fascinating ideas for modulating the intestinal ecosystem in order to improve clinical outcomes. Nutritional strategies, either by changing the route of nutritional supplementation or by administering specific molecules, are increasingly being considered as cost- and risk-effective methods of modulating the GM. Nutritional support has also emerged in the past several years as a key feature in supportive care for allo-HSCT recipients, and deterioration of nutritional status is associated with decreased overall survival and higher complication rates during treatment. Herein we provide a complete overview focused on nutritional modulation of the GM in allo-HSCT recipients. We address how pre transplant diet could affect GM composition and its ability to withstand the upsetting events occurring during transplantation. We also provide a complete overview on the influence of the route of nutritional administration on the intestinal ecosystem, with a particular focus on the comparison between enteral and parenteral nutrition (PN). Moreover, as mounting evidence are showing how specific components of post-transplant diet, such as lactose, could drastically shape the GM, we will also summarize the role of prebiotic supplementation in the modulation of the intestinal flora and in allo-HSCT outcomes.
Project description:We evaluated anti-spike protein antibody (anti-S) production in 130 hematopoietic stem cell transplant (HSCT) recipients who received the coronavirus disease-2019 vaccine. Sixty-five received allo-HSCT and 65 received auto-HSCT. Disease-specific treatments were being administered to 43.1% of allo-HSCT and 69.2% of auto-HSCT patients. Seropositivity was observed in 87.7% of allo-HSCT and 89.2% in auto-HSCT patients. Anti-S antibody production was significantly impaired in auto-HSCT patients compared with controls (178U/mL [0.4-4990.0] vs. 669 U/mL [40.3-4377.0], p < 0.001), but not in allo-HSCT patients (900 U/mL [0.4-12,893.0] vs. 860 U/mL [40.3-8988.0], P = 0.659). Clinically relevant anti-S antibody levels (> 264 U/mL) were achieved in 59.2% of patients (76.9% in allo-HSCT and 41.5% in auto-HSCT). The main factors influencing the protective level of the antibody response were the CD19 + cell count and serum immunoglobulin G levels, and these were significant in both allo-HSCT and auto-HSCT patients. Other factors included time since HSCT, complete remission status, use of immunosuppressive drugs, and levels of lymphocyte subsets including CD4, CD8 and CD56 positive cells, but these were only significant in allo-HSCT patients. Allo-HSCT patients had a relatively favorable antibody response, while auto-HSCT patients had poorer results.
Project description:Allogeneic hematopoietic stem cell transplantation recipients have an increasing risk of both hemorrhagic and thrombotic complications. However, the competing risks of two of these life-threatening complications in these complex patients have still not been well defined. We retrospectively analyzed data from 431 allogeneic transplantation recipients to identify the incidence, risk factors and mortality due to thrombosis and bleeding. Significant clinical bleeding was more frequent than symptomatic thrombosis. The cumulative incidence of a bleeding episode was 30.2% at 14 years. The cumulative incidence of a venous or arterial thrombosis at 14 years was 11.8% and 4.1%, respectively. The analysis of competing factors for venous thrombosis revealed extensive chronic graft-versus-host disease to be the only independent prognostic risk factor. By contrast, six factors were associated with an increased risk of bleeding; advanced disease, ablative conditioning regimen, umbilical cord blood transplantation, anticoagulation, acute III-IV graft-versus-host disease, and transplant-associated microangiopathy. The development of thrombosis did not significantly affect overall survival (P=0.856). However, significant clinical bleeding was associated with inferior survival (P<0.001). In allogeneic hematopoietic stem cell transplantation, significant clinical bleeding is more common than thrombotic complications and affects survival.
Project description:Therapy-related myelodysplastic syndrome is a long-term complication of cancer treatment in patients receiving cytotoxic therapy, characterized by high-risk genetics and poor outcomes. Allogeneic hematopoietic cell transplantation is the only potential cure for this disease, but the prognostic impact of pre-transplant genetics and clinical features has not yet been fully characterized. We report here the genetic and clinical characteristics and outcomes of a relatively large cohort of patients with therapy-related myelodysplastic syndrome (n=67) who underwent allogeneic transplantation, comparing these patients to similarly treated patients with de novo disease (n=199). The 5-year overall survival was not different between patients with therapy-related and de novo disease (49.9% versus 53.9%; P=0.61) despite a higher proportion of individuals with an Intermediate-2/High International Prognostic Scoring System classification (59.7% versus 43.7%; P=0.003) and high-risk karyotypes (61.2% versus 30.7%; P<0.01) among the patients with therapy-related disease. In mutational analysis, TP53 alteration was the most common abnormality in patients with therapy-related disease (n=18: 30%). Interestingly, the presence of mutations in TP53 or in any other of the high-risk genes (EZH2, ETV6, RUNX1, ASXL1: n=29: 48%) did not significantly affect either overall survival or relapse-free survival. Allogeneic stem-cell transplantation is, therefore, a curative treatment for patients with therapy-related myelodysplastic syndrome, conferring a similar long-term survival to that of patients with de novo disease despite higher-risk features. While TP53 alteration was the most common mutation in therapy-related myelodysplastic syndrome, the finding was not detrimental in our case-series.
Project description:GATA2 deficiency was described in 2011, and shortly thereafter allogeneic hematopoietic stem cell transplantation (HSCT) was shown to reverse the hematologic disease phenotype. However, there remain major unanswered questions regarding the type of conditioning regimen, type of donors, and graft-versus-host disease (GVHD) prophylaxis. We report 59 patients with GATA2 mutations undergoing HSCT at National Institutes of Health between 2013 and 2020. Primary endpoints were engraftment, reverse of the clinical phenotype, secondary endpoints were overall survival (OS), event-free survival (EFS), and the incidence of acute and chronic GVHD. The OS and EFS at 4 years were 85·1% and 82·1% respectively. Ninety-six percent of surviving patients had reversal of the hematologic disease phenotype by one-year post-transplant. Incidence of grade III-IV aGVHD in matched related donor (MRD) and matched unrelated donor recipients (URD) patients receiving Tacrolimus/Methotrexate for GVHD prophylaxis was 32%. In contrast, in the MRD and URD who received post-transplant cyclophosphamide (PT/Cy), no patient developed grade III-IV aGVHD. Six percent of haploidentical related donor (HRD) recipients developed grade III-IV aGVHD. In summary, a busulfan-based HSCT regimen in GATA2 deficiency reverses the hematologic disease phenotype, and the use of PT/Cy reduced the risk of both aGVHD and cGVHD.