Project description:Dobrava virus (DOBV) is a hantavirus that causes hemorrhagic fever with renal syndrome (HFRS) in Europe. It is hosted by at least two rodent species, Apodemus flavicollis and A. agrarius. According to their natural hosts they form the distinct genetic lineages DOBV-Af and DOBV-Aa, respectively. We have now established a DOBV isolate named Slovakia (SK/Aa) from an A. agrarius animal captured in Slovakia. The complete S and M and partial L segment nucleotide sequences of the new isolate were determined. Phylogenetic analyses showed that the SK/Aa isolate clustered together with the other DOBV-Aa sequences amplified from A. agrarius before and can be taken as the representative of this genetic lineage. SK/Aa, in comparison with a DOBV-Af isolate, was used for serotyping neutralizing antibodies of HFRS patients in Central Europe. Most patients' sera exhibited a higher endpoint titer when probed with our new isolate, suggesting that DOBV-Aa strains are responsible for most of the DOBV-caused HFRS cases in this region.
Project description:Adult ascarid worms from the field mice, Apodemus agrarius, were observed with a light and scanning electron microscope, and molecularly analized with 18S rRNA gene. In the scanning electron microscope, 3 prominent labia were present in the anterior end of male and female worms, but the interlabia and gubernaculum were absent. Scanning electron micrographs showed cervical alae as vestigial organs that looked like a slightly uplifted superficial sewing stitch. Total 6 pairs of post-cloacal papillae were observed on the tail of the male worms. The tail of female worms was blunt and conical shape with a spine-like structure, mucron. The eggs were sub-globular, coated with the albuminous layer and 73 by 82 μm in average size. The superficial pits of T. apodemi egg (mean 8.6×6.7 μm) are obviously bigger than those of Toxocara spp. The partial sequence of 18S rRNA showed the sequence homology of Toxocara canis (99.6%), Toxocara cati (99.4%), Toxascaris leonina (99.4%), and Toxocara vitulorum (99.2%). Conclusively, it was confirmed that ascarid nematodes, Toxocara apodemi, recovered from striped field mice in Korea are taxonomically conspecific relationship with genus Toxocara and genetic divergence from other Toxocara species.
Project description:BackgroundIn rodents, the cell surface complement regulatory protein CD46 is expressed solely on the spermatozoal acrosome membrane. Ablation of the CD46 gene is associated with a faster acrosome reaction. Sperm from Apodemus flavicollis (yellow-necked field mice), A. microps (pygmy field mice) and A. sylvaticus (European wood mice) fail to express CD46 protein and exhibit a more rapid acrosome reaction rate than Mus (house mice) or BALB/c mice. A. agrarius (striped field mice) belong to a different Apodemus subgenus and have pronounced promiscuity and large relative testis size. The aim of this study was to determine whether A. agrarius sperm fail to express CD46 protein and, if so, whether A. agrarius have a faster acrosome reaction than Mus.MethodsReverse transcription polymerase chain reaction (RT-PCR) was used to assess whether A. agrarius transcribe testicular CD46 mRNA. RT-PCR was supplemented with 3'- and 5'-rapid amplification of cDNA ends to determine the complete nucleotide sequence of A. agrarius CD46. Fluorescence microscopy was used to assess whether CD46 protein is expressed by A. agrarius sperm. The acrosome status of A. agrarius sperm was calculated over time by immunocytochemistry using peanut agglutinin lectin.ResultsWe demonstrate that A. agrarius mice transcribe two unique alternatively spliced testicular CD46 mRNA transcripts, both lacking exon 7, which differ from those described previously in other Apodemus species. The larger A. agrarius CD46 transcript has an insert between exons 10 and 11 which, if translated, would result in a novel cytoplasmic tail. In addition, A. agrarius CD46 transcripts have an extended AU-rich 3'-untranslated region (UTR) and a truncated 5'-UTR, resulting in failure to express spermatozoal CD46 protein. We show that A. agrarius has a significantly faster spontaneous acrosome reaction rate than A. sylvaticus and Mus.ConclusionAbsence of CD46 protein expression is associated with acrosomal instability in rodents. A. agrarius mice express novel CD46 transcripts, resulting in the trade of spermatozoal CD46 protein expression for a rapid acrosome reaction rate, in common with other species of field mice. This provides a strategy to increase competitive sperm advantage for individuals, leading to faster fertilisation in this highly promiscuous genus.
Project description:BackgroundHeligmosomoides polygyrus is a widespread gastro-intestinal nematode infecting wild Apodemus (wood mice) throughout Europe. Using molecular and morphological evidence, we review the status of Heligmosomoides from Apodemus agrarius in Poland previously considered to be an outlying clade of H. polygyrus, to further resolve the status of the laboratory model species, H. bakeri.MethodsMorphological analysis of the male bursa and the synlophe, and molecular analyses of concatenated nuclear (28S rDNA, ITS1 and ITS2) and mitochondrial (CO1 and cytb) genes, of Heligmosomoides collected from Apodemus agrarius from two sites in Poland and comparison with related heligmosomids from voles and mice in Eurasia.ResultsHeligmosomoides neopolygyrus, a heligmosomid nematode from Apodemus species from China and Japan, is recognised for the first time in western Europe infecting Apodemus agrarius in Poland. It can be distinguished from H. polygyrus by the filiform externo-dorsal rays of the male copulatory bursa and the small, equally distributed longitudinal crêtes on the body. Specimens from A. agrarius are 20% different at ribosomal (ITS1 and ITS2) nuclear loci, and 10% different at the mitochondrial cytb locus from H. polygyrus, and in phylogenetic analyses group with the vole-infecting genus Heligmosomum.ConclusionsDespite morphological similarity, H. neopolygyrus is only distantly related to H. polygyrus from western European Apodemus, and may be more closely related to vole-infecting taxa. It was brought into Europe by the recent rapid migration of the host mice. Inclusion of H. neopolygyrus in phylogenies makes it clear that Heligmosomoides is paraphyletic, with the pika-infecting Ohbayashinema and the vole-infecting Heligmosomum nesting within it. Clarification of the European status of H. neopolygyrus also allows H. bakeri, the laboratory model species, to be seen as a terminal sister clade to H. polygyrus, rather than as an internal clade of the latter taxon.
Project description:Blood samples from Apodemus agrarius from Poland yielded PCR amplicons of Bartonella species. These included B. grahamii, B. taylorii, and B. birtlesii, as is typical of European Apodemus, as well as B. elizabethae-like forms and a recombinant strain of B. taylorii, most closely related to an American isolate from Tamiasciurus hudsonicus.
Project description:A phylogeographic analysis of A. agrarius based on the complete mtDNA cytochrome b and control region sequences has been performed using data obtained for the first time for the species from large regions of the central part of Northern Eurasia (23 localities of Altai, Western Siberia, and the Urals). The obtained results have demonstrated a complex intraspecific differentiation of A. agrarius, which has manifested not only in the isolation of the isles populations in Southeast Asia (Jeju and Taiwan), but also in the genetic heterogeneity of mainland populations, which has reflected the history of the modern intraspecific genetic diversity formation against the background of changing physiographic conditions of Eurasia in the Quaternary. The divergence of genetic lineages has taken place apparently simultaneously (in mid-Pleistocene) on the territory of the Eastern part of the modern disjunctive range, where all the identified lineages are present today. The demographic history and possible evolutionary scenarios for A. agrarius in the Western part of the range have been considered. TMRC reconstructions have shown that the lifetime of the common ancestor of the lineage that expanded in the Western Palearctic is about 17.7 [95% HPD 13.2-22.5] kyr. This suggests that the transcontinental expansion of A. agrarius is a relatively recent event that has occurred after the LGM.
Project description:Occurrence records for named, native Australian millipedes from the Global Biodiversity Information Facility (GBIF) and the Atlas of Living Australia (ALA) were compared with the same records from the Millipedes of Australia (MoA) website, compiled independently by the author. The comparison revealed some previously unnoticed errors in MoA, and a much larger number of errors and other problems in the aggregated datasets. Errors have been corrected in MoA and in some data providers' databases, but will remain in GBIF and ALA until data providers have supplied updates to these aggregators. An audit by a specialist volunteer, as reported here, is not a common occurrence. It is suggested that aggregators should do more, or more effective, data checking and should query data providers when possible errors are detected, rather than simply disclaim responsibility for aggregated content.
Project description:Using nested polymerase chain reaction, we sequenced Dobrava virus (DOB) from the rodent Apodemus agrarius in Hungary. The samples we isolated group with DOB samples previously isolated from A. flavicollis. This grouping may indicate host switching.