Project description:Background and Aims: Antithrombin (AT) is the most important physiological inhibitor in vivo, and coagulation factor II (FII) or prothrombin is a coagulation factor vital to life. The purpose of our research was to illustrate the connection between gene mutations and the corresponding deficiencies of AT and FII. Methods: Functional and molecular analyses were performed. The possible impact of the mutation was analyzed by online bioinformatics software. ClustalX-2.1-win and PyMol/Swiss-Pdb Viewer software were used for conservative analyses and to generate molecular graphic images, respectively. Results: The proband showed a lower limb venous thrombosis and acute pulmonary embolism infarction with reduced AT activity (50%). His mother, with subcutaneous ecchymosis, had reduced activities of AT and FII, of 44 and 5%, respectively. Molecular analysis showed that both the proband and his mother carried c.964A > T (p.Lys322stop) heterozygotes in SERPINC1. The difference was that his mother carried homozygous c.494C > T (p.Thr165Met) in F2, while the proband was wild type. Bioinformatics and model analysis indicated that mutations may destroy the function and structure of AT and FII protein. Conclusion: This study identified a novel mutation of SERPINC1 and a missense mutation of F2, which may be the molecular mechanism leading to AT and FII deficiency in this family. It will help genetic diagnosis and counseling for thrombotic families.
Project description:BACKGROUND:Inherited deficiency of the antithrombin (hereditary antithrombin deficiency, AT deficiency, OMIM #613118) is a relatively rare (1:2000-3000) autosomal-dominant disorder with high risk of venous thromboembolism. Mutations in the serpin family C member 1 gene (SERPINC1) can lead to Quantitative (type I) and Qualitative (type II) types of antithrombin deficiency. We describe a new genetic variant in the SERPINC1 gene and our approach to variant interpretation. CASE PRESENTATION:We observed a 29 y.o. female proband with the episode of venous thrombosis at the age of 18 and family history of thrombosis. The antithrombin level in our patient was low, 44-48% (AT deficiency type I). A new genetic variant c.662G > C (p.W221S) in the SERPINC1 gene was detected in proband and affected father but was absent in healthy sister. We used in silico tools to evaluate the possible impact of p.W221S variant on protein structure and function. In mutated SERPINC1 protein a new N-linked glycosylation site is formed, however, it is unclear if the glycosylation at 219-221 site is possible. CONCLUSION:The proband was provided with appropriate genetic counseling and referred to a hematologist. Based on all the evidence we classify the p.W221S variant as variant of unknown clinical significance. In this paper we discuss some aspects of genetic counseling, variant interpretation and thromboembolic prophilaxis.
Project description:BackgroundThrombophilia is a coagulation disorder closely associated with venous thromboembolism. Hereditary antithrombin III (AT III) deficiency is a type of genetic thrombophilia. In China, genetic thrombophilia patients mainly suffer from deficiencies in AT III, protein S, and protein C. Multiple mutations in the serpin family C member 1 (SERPINC1) can affect AT III activity, resulting in thrombosis.Case presentationThis case presented a 17-year-old adolescent female who developed lower extremity venous thrombosis and subsequently pulmonary embolism (PE) following a right leg injury. A missense mutation in gene SERPINC1 of c.331 T > C, p.S111P was detected on the patient, resulting in a decreased AT III activity and an elevated risk of thrombosis. The patient received anticoagulation treatment for approximately 5 months. During follow-up, the blood clot gradually dissolved, and there have been no recurrent thrombotic events reported thus far.DiscussionHereditary AT deficiency can be classified into two types based on the plasma levels of the enzymatic activity and antigen. Type I is a quantitative defect, while Type II is a qualitive defect. Until 2021, 486 SERPINC1 gene mutations have been registered, more than 18% of which are point mutations. The SERPINC1 mutation c.331 T > C in was firstly reported in 2017, which was classified into type I AT III deficiency.ConclusionHereditary thrombophilia is a coagulation disorder with a high omission diagnostic rate. Minor mutations in the SERPINC1 gene can also lead to hereditary AT III deficiency, which in turn can cause PE. We emphasized the importance of etiological screening for hereditary thrombophilia in venous thromboembolism patients without obvious high-risk factors. Long-term anticoagulation treatment and avoidance of potential thrombosis risk factors are critical for such patients.
Project description:A 37-year-old woman developed deep venous thrombosis (DVT) of the left lower extremity at 8 weeks of gestation during her second pregnancy. There was no personal or family history of thrombosis. She received intravenous heparin, but heparin resistance was noted. The plasma antithrombin activity decreased to 45% in the acute phase, and it remained low postpartum. Her mother also had low plasma antithrombin activity (46%), and genetic testing revealed a heterozygous SERPINC1 mutation. Even without a family history of thrombosis, we should suspect hereditary antithrombin deficiency in patients with initial DVT and perform thorough investigation.
Project description:BackgroundTechnical advances following the Human Genome Project revealed that high-quality and -quantity DNA may be obtained from whole saliva samples. However, usability of previously collected samples and the effects of environmental conditions on the samples during collection have not been assessed in detail. In five studies we document the effects of sample volume, handling and storage conditions, type of collection device, and oral sampling location, on quantity, quality, and genetic assessment of DNA extracted from cells present in saliva.MethodsSaliva samples were collected from ten adults in each study. Saliva volumes from .10-1.0 ml, different saliva collection devices, sampling locations in the mouth, room temperature storage, and multiple freeze-thaw cycles were tested. One representative single nucleotide polymorphism (SNP) in the catechol-0-methyltransferase gene (COMT rs4680) and one representative variable number of tandem repeats (VNTR) in the serotonin transporter gene (5-HTTLPR: serotonin transporter linked polymorphic region) were selected for genetic analyses.ResultsThe smallest tested whole saliva volume of .10 ml yielded, on average, 1.43 ± .77 μg DNA and gave accurate genotype calls in both genetic analyses. The usage of collection devices reduced the amount of DNA extracted from the saliva filtrates compared to the whole saliva sample, as 54-92% of the DNA was retained on the device. An "adhered cell" extraction enabled recovery of this DNA and provided good quality and quantity DNA. The DNA from both the saliva filtrates and the adhered cell recovery provided accurate genotype calls. The effects of storage at room temperature (up to 5 days), repeated freeze-thaw cycles (up to 6 cycles), and oral sampling location on DNA extraction and on genetic analysis from saliva were negligible.ConclusionsWhole saliva samples with volumes of at least .10 ml were sufficient to extract good quality and quantity DNA. Using 10 ng of DNA per genotyping reaction, the obtained samples can be used for more than one hundred candidate gene assays. When saliva is collected with an absorbent device, most of the nucleic acid content remains in the device, therefore it is advisable to collect the device separately for later genetic analyses.
Project description:The extreme genetic heterogeneity of nonsyndromic hearing loss (NSHL) makes genetic diagnosis expensive and time consuming using available methods. To assess the feasibility of target-enrichment and massively parallel sequencing technologies to interrogate all exons of all genes implicated in NSHL, we tested nine patients diagnosed with hearing loss. Solid-phase (NimbleGen) or solution-based (SureSelect) sequence capture, followed by 454 or Illumina sequencing, respectively, were compared. Sequencing reads were mapped using GSMAPPER, BFAST, and BOWTIE, and pathogenic variants were identified using a custom-variant calling and annotation pipeline (ASAP) that incorporates publicly available in silico pathogenicity prediction tools (SIFT, BLOSUM, Polyphen2, and Align-GVGD). Samples included one negative control, three positive controls (one biological replicate), and six unknowns (10 samples total), in which we genotyped 605 single nucleotide polymorphisms (SNPs) by Sanger sequencing to measure sensitivity and specificity for SureSelect-Illumina and NimbleGen-454 methods at saturating sequence coverage. Causative mutations were identified in the positive controls but not in the negative control. In five of six idiopathic hearing loss patients we identified the pathogenic mutation. Massively parallel sequencing technologies provide sensitivity, specificity, and reproducibility at levels sufficient to perform genetic diagnosis of hearing loss.
Project description:We analyzed feasibility of pooling saliva samples for severe acute respiratory syndrome coronavirus 2 testing and found that sensitivity decreased according to pool size: 5 samples/pool, 7.4% reduction; 10 samples/pool, 11.1%; and 20 samples/pool, 14.8%. When virus prevalence is >2.6%, pools of 5 require fewer tests; when <0.6%, pools of 20 support screening strategies.
Project description:This article focuses on genetic testing for hereditary colorectal cancer syndromes. Genetic testing is now available in North America for all of the known hereditary colorectal cancer genes. In addition, most of these tests have improved significantly in the past few years with the inclusion of techniques to detect large rearrangements. As a result, clinicians are in a better position than ever to help families with these syndromes to identify the underlying genetic cause. This identification will ensure that they receive appropriate management, and will enable their relatives to determine their precise risks and to tailor their cancer surveillance.
Project description:High throughput methods such as next generation sequencing are increasingly used in molecular diagnosis. The aim of this study was to develop a workflow for the detection of BRCA1 and BRCA2 mutations using massive parallel sequencing in a 454 GS Junior bench top sequencer. Our approach was first validated in a panel of 23 patients containing 62 unique variants that had been previously Sanger sequenced. Subsequently, 101 patients with familial breast and ovarian cancer were studied. BRCA1 and BRCA2 exon enrichment has been performed by PCR amplification using the BRCA MASTR kit (Multiplicom). Bioinformatic analysis of reads is performed with the AVA software v2.7 (Roche). In total, all 62 variants were detected resulting in a sensitivity of 100%. 71 false positives were called resulting in a specificity of 97.35%. All of them correspond to deletions located in homopolymeric stretches. The analysis of the homopolymers stretches of 6 bp or longer using the BRCA HP kit (Multiplicom) increased the specificity of the detection of BRCA1 and BRCA2 mutations to 99.99%. We show here that massive parallel pyrosequencing can be used as a diagnostic strategy to test for BRCA1 and BRCA2 mutations meeting very stringent sensitivity and specificity parameters replacing traditional Sanger sequencing with a lower cost.
Project description:Ataxia is a neurological cerebellar disorder characterized by loss of coordination during muscle movements affecting walking, vision, and speech. Genetic ataxias are very heterogeneous, with causative variants reported in over 50 genes, which can be inherited in classical dominant, recessive, X-linked, or mitochondrial fashion. A common mechanism of dominant ataxias is repeat expansions, where increasing lengths of repeated DNA sequences result in non-functional proteins that accumulate in the body causing disease. Greater understanding of all ataxia genes has helped identify several different pathways, such as DNA repair, ubiquitination, and ion transport, which can be used to help further identify new genes and potential treatments. Testing for the most common mutations in these genes is now clinically routine to help with prognosis and treatment decisions, but next generation sequencing will revolutionize how genetic testing will be done. Despite the large number of known ataxia causing genes, however, many individuals with ataxia are unable to obtain a genetic diagnosis, suggesting that more genes need to be discovered. Utilization of next generation sequencing technologies, expression studies, and increased knowledge of ataxia pathways will aid in the identification of new ataxia genes.