Unknown

Dataset Information

0

On-Site Detection of SARS-CoV-2 Antigen by Deep Learning-Based Surface-Enhanced Raman Spectroscopy and Its Biochemical Foundations.


ABSTRACT: A rapid, on-site, and accurate SARS-CoV-2 detection method is crucial for the prevention and control of the COVID-19 epidemic. However, such an ideal screening technology has not yet been developed for the diagnosis of SARS-CoV-2. Here, we have developed a deep learning-based surface-enhanced Raman spectroscopy technique for the sensitive, rapid, and on-site detection of the SARS-CoV-2 antigen in the throat swabs or sputum from 30 confirmed COVID-19 patients. A Raman database based on the spike protein of SARS-CoV-2 was established from experiments and theoretical calculations. The corresponding biochemical foundation for this method is also discussed. The deep learning model could predict the SARS-CoV-2 antigen with an identification accuracy of 87.7%. These results suggested that this method has great potential for the diagnosis, monitoring, and control of SARS-CoV-2 worldwide.

SUBMITTER: Huang J 

PROVIDER: S-EPMC8247782 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8446005 | biostudies-literature
| S-EPMC3386126 | biostudies-literature
| S-EPMC10886963 | biostudies-literature
| S-EPMC9983029 | biostudies-literature
| S-EPMC9071040 | biostudies-literature
| S-EPMC9057851 | biostudies-literature
| S-EPMC6710251 | biostudies-literature
| S-EPMC6989628 | biostudies-literature
| S-EPMC7519110 | biostudies-literature
| S-EPMC8699280 | biostudies-literature