Project description:COVID-19 incidence and case fatality rates (CFR) differ among ethnicities, stimulating efforts to pinpoint genetic factors that could explain these phenomena. In this regard, the multiallelic apolipoprotein E (APOE) gene has recently been interrogated in the UK biobank cohort, demonstrating associations of the APOE ε4/ε4 genotype with COVID-19 severity and mortality. The frequency of the ε4 allele and thus the distribution of APOE ε4/ε4 genotype may differ among populations. We have assessed APOE genotypes in 1638 Greek individuals, based on haplotypes derived from SNP rs7412 and rs429358 and found reduced frequency of ε4/ε4 compared to the British cohort. Herein we discuss this finding in relation to CFR and hypothesize on the potential mechanisms linking APOE ε4/ε4 to severe COVID-19. We postulate that the metabolic deregulation ensued by APOE4, manifested by elevated cholesterol and oxidized lipoprotein levels, may be central to heightened pneumocyte susceptibility to infection and to exaggerated lung inflammation associated with the ε4/ε4 genotype. We also discuss putative dietary and pharmacological approaches for the prevention and management of COVID-19 in APOE ε4/ε4 individuals.
Project description:BackgroundApolipoprotein (APOE) e4 allele status has been linked to clinical presentation and progression in Alzheimer's disease; however, evidence for a role of APOE e4 in Parkinson's disease (PD) remains largely inconclusive. In this analysis we explored potential significant associations between APOE e4 allele status and characteristics of clinical presentation in patients with PD.MethodsData came from 424 subjects evaluated using the Uniform Data Set (UDS) assessment collected by the National Alzheimer's Coordinating Center. Subjects had a known year of diagnosis of PD and experienced change in motor function prior to any change in cognition. Linear and logistic regression were used to model the association between APOE e4 carrier status and clinical characteristics including measures of cognitive decline and motor and neuropsychiatric symptoms. Amyloid burden was also evaluated for a subset of patients who died and consented to autopsy.ResultsOdds of dementia were higher in APOE e4 carriers (OR = 5.15), and, on average, APOE e4 carriers scored two points worse on tests of episodic memory and the Clinical Dementia Rating Sum of Boxes assessment. There was little evidence to support an association between e4 carrier status and severity of motor features, and, of the four neuropsychiatric symptoms evaluated, only presence of hallucinations was significantly associated with APOE e4 carrier status (OR = 5.29). Neuropathology data revealed higher frequencies of neuritic and diffuse amyloid plaques in APOE e4 carriers compared to non-carriers.ConclusionsAPOE e4 allele status is associated with dementia and severity of Alzheimer's disease pathologic features in PD.
Project description:BackgroundPrevious results have been mixed regarding the role of the apolipoprotein E e4 (APOE e4) allele in later-life depression: some studies note that carriers experience greater symptoms and increased risk while others find no such association. However, there are few prospective, population-based studies of the APOE e4-depression association and fewer that examine depressive symptom trajectory and depression risk longitudinally. We examined the association between APOE e4 allele status and longitudinal change in depressive symptoms and depression risk in later-life, over a 12-year follow-up period.MethodsWe used data from 690 participants of the Lothian Birth Cohort 1936 who took part in the Scottish Mental Survey 1947 (aged 11) and were followed-up in later-life over five waves from 2004 to 2019 (aged 70-82). We used APOE e4 allele status to predict longitudinal change in depressive symptom scores and risk of depression (defined by a symptom score threshold or use of depression-related medication). Models were adjusted for sex, childhood cognitive ability, childhood social class, education, adult social class, smoking status and functional limitations at baseline.ResultsDepressive symptom scores increased with age. Once adjusted for covariates, APOE e4 allele status did not significantly predict symptom score trajectories or depression risk. Greater functional limitations at baseline significantly predicted poorer symptom score trajectories and increased depression risk (defined by medications). APOE e4 allele status did not significantly moderate the contribution of sex, education or functional limitations.ConclusionsThere was no evidence that APOE e4 carriers experience an increased risk for later-life depression.
Project description:BackgroundThe apolipoprotein E polymorphism ε4 allele (ApoE4) and gait impairment are both known risk factors for developing cognitive decline and dementia. However, it is unclear the interrelationship between these factors, particularly among older adults with mild cognitive impairment (MCI) who are considered as prodromal for Alzheimer's disease. This study aimed to determine whether ApoE4 carrier individuals with MCI may experience greater impairment in gait performance.MethodsFifty-six older adults with MCI from the "Gait and Brain Study" who were identified as either ApoE4 carriers (n = 20) or non-ApoE4 carriers (n = 36) with 1 year of follow-up were included. Gait variability, the main outcome variable, was assessed as stride time variability with an electronic walkway. Additional gait variables and cognitive performance (mini-mental state examination [MMSE] and Montreal Cognitive Assessment [MoCA]) were also recorded. Covariates included age, sex, education level, body mass index, and number of comorbidities.ResultsBaseline characteristics were similar for both groups. Repeated measures analysis of covariance showed that gait stride time and stride length variabilities significantly increased in ApoE4 carriers but was maintained in the non-ApoE4 carriers. Similarly, ApoE4 carriers showed greater decrease in MMSE score at follow-up.ConclusionsIn this sample of older adults with MCI, the presence of at least one copy of ApoE4 was associated with the development of both increased gait variability and cognitive decline during 1 year of follow-up. ApoE4 genotype might be considered as a potential mediator of decline in mobility function in MCI; future studies with larger samples are needed to confirm our preliminary findings.
Project description:The apolipoprotein E family contains three major isoforms (ApoE4, E3, and E2) that are directly involved with lipoprotein metabolism and cholesterol transport. ApoE3 and apoE4 differ in only a single amino acid with an arginine in apoE4 changed to a cysteine at position 112 in apoE3. Yet only apoE4 is recognized as a risk factor for Alzheimer's disease. Here we used (19)F NMR to examine structural differences between apoE4 and apoE3 and the effect of the C-terminal domain on the N-terminal domain. After incorporation of 5-(19)F-tryptophan the 1D (19)F NMR spectra were compared for the N-terminal domain and for the full length proteins. The NMR spectra of the N-terminal region (residues 1-191) are reasonably well resolved while those of the full length wild-type proteins are broad and ill-defined suggesting considerable conformational heterogeneity. At least four of the seven tryptophan residues in the wild type protein appear to be solvent exposed. NMR spectra of the wild-type proteins were compared to apoE containing four mutations in the C-terminal region that gives rise to a monomeric form either of apoE3 under native conditions (Zhang et al., Biochemistry 2007; 46: 10722-10732) or apoE4 in the presence of 1 M urea. For either wild-type or mutant proteins the differences in tryptophan resonances in the N-terminal region of the protein suggest structural differences between apoE3 and apoE4. We conclude that these differences occur both as a consequence of the Arg158Cys mutation and as a consequence of the interaction with the C-terminal domain.
Project description:Apolipoprotein E (apoE) is a 299 residue, exchangeable apolipoprotein that has essential roles in cholesterol homeostasis and reverse cholesterol transport. It is a two-domain protein with the C-terminal (CT) domain mediating protein self-association via helix-helix interactions. In humans, the APOE gene is polymorphic with three common alleles, ε2, ε3, and ε4, occurring in frequencies of ~ 5%, 77%, and 18%, respectively. Heterozygotes expressing apoE3 and apoE4 isoforms, which differ in residue at position 112 in the N-terminal domain (C112 in apoE3 and R112 in apoE4), represent the highest population of ε4 carriers, an allele highly associated with Alzheimer's disease. The objective of this study was to determine if apoE3 and apoE4 have the ability to hybridize to form a heteromer in lipid-free state. Refolding an equimolar mixture of His-apoE3 and FLAG-apoE4 (or vice versa) followed by pull-down and immunoblotting indicated formation of apoE3/apoE4 heteromers. Förster resonance energy transfer between donor fluorophore on one isoform and acceptor on the other, both located in the respective CT domains, revealed a distance of separation of ~ 46 Å between the donor/acceptor pair. Similarly, a quencher placed on one was able to mediate significant quenching of fluorescence emission on the other, indicative of spatial proximity within collisional distance between the two. ApoE3/apoE4 heteromer association was also noted in lipid-associated state in reconstituted lipoprotein particles. The possibility of heteromerization of apoE3/apoE4 bears implications in the potential mitigating role of apoE3 on the folding and physiological behavior of apoE4 and its role in maintaining cholesterol homeostasis.
Project description:In addition to being the greatest genetic risk factor for Alzheimer's disease, expression of the ɛ4 allele of apolipoprotein E can lead to cognitive decline during ageing that is independent of Alzheimer's amyloid-β and tau pathology. In human post-mortem tissue and mouse models humanized for apolipoprotein E, we examined the impact of apolipoprotein E4 expression on brain exosomes, vesicles that are produced within and secreted from late-endocytic multivesicular bodies. Compared to humans or mice homozygous for the risk-neutral ɛ3 allele we show that the ɛ4 allele, whether homozygous or heterozygous with an ɛ3 allele, drives lower exosome levels in the brain extracellular space. In mice, we show that the apolipoprotein E4-driven change in brain exosome levels is age-dependent: while not present at age 6 months, it is detectable at 12 months of age. Expression levels of the exosome pathway regulators tumor susceptibility gene 101 (TSG101) and Ras-related protein Rab35 (RAB35) were found to be reduced in the brain at the protein and mRNA levels, arguing that apolipoprotein E4 genotype leads to a downregulation of exosome biosynthesis and release. Compromised exosome production is likely to have adverse effects, including diminishing a cell's ability to eliminate materials from the endosomal-lysosomal system. This reduction in brain exosome levels in 12-month-old apolipoprotein E4 mice occurs earlier than our previously reported brain endosomal pathway changes, arguing that an apolipoprotein E4-driven failure in exosome production plays a primary role in endosomal and lysosomal deficits that occur in apolipoprotein E4 mouse and human brains. Disruption of these interdependent endosomal-exosomal-lysosomal systems in apolipoprotein E4-expressing individuals may contribute to amyloidogenic amyloid-β precursor protein processing, compromise trophic signalling and synaptic function, and interfere with a neuron's ability to degrade material, all of which are events that lead to neuronal vulnerability and higher risk of Alzheimer's disease development. Together, these data suggest that exosome pathway dysfunction is a previously unappreciated component of the brain pathologies that occur as a result of apolipoprotein E4 expression.
Project description:APOE4 allele is a major risk factor for late-onset Alzheimer disease (AD). The mechanism of action of APOE in AD remains unclear. To study the effects of APOE alleles on gene expression in AD, we have analyzed the gene transcription patterns of human hippocampus from APOE3/3, APOE3/4, APOE4/4 AD patients and normal control using Serial Analysis of Gene Expression (SAGE). Using SAGE, we found gene expression patterns in hippocampus of APOE3/4 and APOE4/4 AD patients differ substantially from those of APOE3/3 AD patients. APOE3/4 and APOE4/4 allele expression may activate similar genes or gene pools with associated functions. APOE4 AD alleles activate multiple tumor suppressors, tumor inducers and negative regulator of cell growth or repressors that may lead to increased cell arrest, senescent and apoptosis. In contrast, there is decreased expression of large clusters of genes associated with synaptic plasticity, synaptic vesicle trafficking (metabolism) and axonal/neuronal outgrowth. In addition, reduction of neurotransmitter receptors and Ca++ homeostasis, disruption of multiple signal transduction pathways, and loss of cell protection and notably mitochondrial oxidative phosphorylation/energy metabolism are associated with APOE3/4 and APOE4/4 AD alleles. These findings help define the mechanisms that APOE4 contribute increased risk for AD and identify new candidate genes conferring susceptibility to AD. Keywords: Serial Analysis of Gene Expression (SAGE); Apolipoprotein E (APOE3/3, APOE3/4, APOE4/4); Alzheimer disease; Hippocampus; apoptosis; signal pathways
Project description:Enduring interest in the Apolipoprotein E (ApoE) polymorphism is ensured by its evolutionary-driven uniqueness in humans and its prominent role in geriatrics and gerontology. We use large samples of longitudinally followed populations from the Framingham Heart Study (FHS) original and offspring cohorts and the Long Life Family Study (LLFS) to investigate gender-specific effects of the ApoE4 allele on human survival in a wide range of ages from midlife to extreme old ages, and the sensitivity of these effects to cardiovascular disease (CVD), cancer, and neurodegenerative disorders (ND). The analyses show that women's lifespan is more sensitive to the e4 allele than men's in all these populations. A highly significant adverse effect of the e4 allele is limited to women with moderate lifespan of about 70 to 95 years in two FHS cohorts and the LLFS with relative risk of death RR = 1.48 (p = 3.6 × 10(-6)) in the FHS cohorts. Major human diseases including CVD, ND, and cancer, whose risks can be sensitive to the e4 allele, do not mediate the association of this allele with lifespan in large FHS samples. Non-skin cancer non-additively increases mortality of the FHS women with moderate lifespans increasing the risks of death of the e4 carriers with cancer two-fold compared to the non-e4 carriers, i.e., RR = 2.07 (p = 5.0 × 10(-7)). The results suggest a pivotal role of non-sex-specific cancer as a nonlinear modulator of survival in this sample that increases the risk of death of the ApoE4 carriers by 150% (p = 5.3 × 10(-8)) compared to the non-carriers. This risk explains the 4.2 year shorter life expectancy of the e4 carriers compared to the non-carriers in this sample. The analyses suggest the existence of age- and gender-sensitive systemic mechanisms linking the e4 allele to lifespan which can non-additively interfere with cancer-related mechanisms.
Project description:APOE4 allele is a major risk factor for late-onset Alzheimer disease (AD). The mechanism of action of APOE in AD remains unclear. To study the effects of APOE alleles on gene expression in AD, we have analyzed the gene transcription patterns of human hippocampus from APOE3/3, APOE3/4, APOE4/4 AD patients and normal control using Serial Analysis of Gene Expression (SAGE). Using SAGE, we found gene expression patterns in hippocampus of APOE3/4 and APOE4/4 AD patients differ substantially from those of APOE3/3 AD patients. APOE3/4 and APOE4/4 allele expression may activate similar genes or gene pools with associated functions. APOE4 AD alleles activate multiple tumor suppressors, tumor inducers and negative regulator of cell growth or repressors that may lead to increased cell arrest, senescence and apoptosis. In contrast, there is decreased expression of large clusters of genes associated with synaptic plasticity, synaptic vesicle docking and fusing and axonal/neuronal outgrowth. In addition, reduction of neurotransmitter receptors and Ca2+ homeostasis, disruption of multiple signal transduction pathways, loss of cell protection, and perhaps most notably, mitochondrial oxidative phosphorylation/energy metabolism are associated with APOE3/4 and APOE4/4 AD alleles. These findings may help define the mechanisms that APOE4 contribute that increase risk for AD and identify new candidate genes conferring susceptibility to AD.