Project description:The classification of sleep state in preterm infants, particularly in distinguishing between active sleep (AS) and quiet sleep (QS), has been investigated using cardiorespiratory information such as electrocardiography (ECG) and respiratory signals. However, accurately differentiating between AS and wake remains challenging; therefore, there is a pressing need to include additional information to further enhance the classification performance. To address the challenge, this study explores the effectiveness of incorporating video-based actigraphy analysis alongside cardiorespiratory signals for classifying the sleep states of preterm infants. The study enrolled eight preterm infants, and a total of 91 features were extracted from ECG, respiratory signals, and video-based actigraphy. By employing an extremely randomized trees (ET) algorithm and leave-one-subject-out cross-validation, a kappa score of 0.33 was achieved for the classification of AS, QS, and wake using cardiorespiratory features only. The kappa score significantly improved to 0.39 when incorporating eight video-based actigraphy features. Furthermore, the classification performance of AS and wake also improved, showing a kappa score increase of 0.21. These suggest that combining video-based actigraphy with cardiorespiratory signals can potentially enhance the performance of sleep-state classification in preterm infants. In addition, we highlighted the distinct strengths and limitations of video-based actigraphy and cardiorespiratory data in classifying specific sleep states.
Project description:Detecting the effectiveness of behavioral interventions to reduce infant night-waking requires valid sleep measures. Although viewed as an objective measure, actigraphy has overestimated night-waking. Sleep diaries are criticized for only documenting night-waking with infant crying. To support potential outcome measure validity, we examined differences between sleep diaries and actigraphy in detecting night-waking and sleep duration. We recruited 5.5 to 8-month-old infants for a behavioral sleep intervention trial conducted from 2009 to 2011. Intervention (sleep education and support) and control groups (safety education and support) collected infant diary and actigraphy data for 5 days. We compared night-time sleep actigraphy with diary data at baseline (194 cases), and 6 weeks (166 cases) and 24 weeks post-education (118 cases). We hypothesized numbers of wakes and wakes of ≥20 min would be higher and longest sleep time and total sleep time shorter by actigraphy compared with diaries. Using paired t-tests, there were significantly more actigraphy night wakes than diary wakes at baseline (t = 29.14, df = 193, p < 0.001), 6 weeks (t = 23.99, df = 165, p < 0.001), and 24 weeks (t = 22.01, df = 117, p < 0.001); and significantly more night wakes of ≥20 min by actigraphy than diary at baseline (t = 5.03, df = 183, p < 0.001), and 24 weeks (t = 2.19, df = 107, p < 0.05), but not 6 weeks (t = 1.37, df = 156, n.s.). Longest sleep duration was significantly higher by diary than actigraphy at baseline (t = 14.71, df = 186, p < 0.001), 6 weeks (t = 7.94, df = 158, p < 0.001), and 24 weeks (t = 17.18, df = 114, p < 0.001). Night sleep duration was significantly higher by diary than actigraphy at baseline (t = 9.46, df = 185, p < 0.001), 6 weeks (t = 13.34, df = 158, p < 0.001), and 24 weeks (t = 13.48, df = 114, p < 0.001). Discrepancies in actigraphy and diary data may indicate accurate actigraphy recording of movement but not sleep given active infant sleep and self-soothing.
Project description:Study Objectives:Periodic breathing (PB) is common in newborns and is an obvious manifestation of ventilatory control instability. However, many infants without PB may still have important underlying ventilatory control instabilities that go unnoticed using standard clinical monitoring. Methods to detect infants with "subclinical" ventilatory control instability are therefore required. The current study aimed to assess the degree of ventilatory control instability using simple bedside recordings in preterm infants. Methods:Respiratory inductance plethysmography (RIP) recordings were analyzed from ~20 minutes of quiet sleep in 20 preterm infants at 36 weeks post-menstrual age (median [range]: 36 [34-40]). The percentage time spent in PB was also calculated for each infant (%PB). Spontaneous sighs were identified and breath-by-breath measurements of (uncalibrated) ventilation were derived from RIP traces. Loop gain (LG, a measure of ventilatory control instability) was calculated by fitting a simple ventilatory control model (gain, time-constant, delay) to the post-sigh ventilatory pattern. For comparison, periodic inter-breath variability was also quantified using power spectral analysis (ventilatory oscillation magnitude index [VOMI]). Results:%PB was strongly associated with LG (r2 = 0.77, p < 0.001) and moderately with the VOMI (r2 = 0.21, p = 0.047). LG (0.52 ± 0.05 vs. 0.30 ± 0.03; p = 0.0025) and the VOMI (-8.2 ± 1.1 dB vs. -11.8 ± 0.9 dB; p = 0.026) were both significantly higher in infants that displayed PB vs. those without. Conclusions:LG and VOMI determined from the ventilatory responses to spontaneous sighs can provide a practical approach to assessing ventilatory control instability in preterm infants. Such simple techniques may help identify infants at particular risk for ventilatory instabilities with concomitant hypoxemia and its associated consequences.
Project description:Study objectivesFew commercially available brands of actigraphs (ACT) have been subjected to rigorous validation with infant participants. The purpose of this study was to examine the agreement between concurrent polysomnography (PSG) and one brand of ACT (AW-64, Mitter Co. Inc.) using appropriate statistical techniques among a sample of healthy infants.MethodsTwenty-two healthy infants (14.1+/-0.6 months) had one night of ankle ACT recording during research PSG at Kosair Children's Hospital Sleep Research Center in Louisville, Kentucky. Macroanalyses were conducted using the Bland-Altman concordance technique to assess agreement between total sleep time (TST) and wake after sleep onset (WASO) simultaneously measured by PSG and ACT, using two ACT algorithm settings. Microanalyses were also calculated to examine sensitivity, specificity, and accuracy of ACT within each PSG-identified sleep state. Correlations were calculated between PSG-identified arousals and the discrepancies between ACT and PSG.ResultsThe Bland-Altman concordance technique revealed that ACT underestimated TST by 72.25 (SD=61.48) minutes and by > or = 60 min among 54.55% of infants. Furthermore, ACT overestimated WASO by 13.85 (SD=30.94) minutes and by > or = 30 min among 40.91% of infants. Sensitivity, specificity, and accuracy analyses revealed that ACT adequately identified sleep, but poorly identified wake. PSG and ACT discrepancies were positively associated with PSG-identified arousals (r=.45).ConclusionsImproved device and/or software development is needed before the AW-64 can be considered a valid method for identifying infant sleep and wake.
Project description:In adults, wakefulness can be markedly prolonged at the expense of sleep, e.g. to stay vigilant in the presence of a stressor. These extra-long wake bouts result in a heavy-tailed distribution (highly right-skewed) of wake but not sleep durations. In infants, the relative importance of wakefulness and sleep are reversed, as sleep is necessary for brain maturation. Here, we tested whether these developmental pressures are associated with the unique regulation of sleep-wake states. In 175 infants of 28-40 weeks postmenstrual age (PMA), we monitored sleep-wake states using electroencephalography and behavior. We constructed survival models of sleep-wake bout durations and the effect of PMA and other factors, including stress (salivary cortisol), and examined whether sleep is resilient to nociceptive perturbations (a clinically necessary heel lance). Wake durations followed a heavy-tailed distribution as in adults and lengthened with PMA and stress. However, differently from adults, active sleep durations also had a heavy-tailed distribution, and with PMA, these shortened and became vulnerable to nociception-associated awakenings. Sleep bouts are differently regulated in infants, with especially long active sleep durations that could consolidate this state's maturational functions. Curtailment of sleep by stress and nociception may be disadvantageous, especially for preterm infants given the limited value of wakefulness at this age. This could be addressed by environmental interventions in the future.
Project description:BackgroundPrevious studies demonstrated a short-term relationship between infant sleep-wake states and oral feeding performance, with state being an indication of infants' neurobehavioral readiness for feeding. However, the relationship between sleep-wake states and feeding skills has not been evaluated longitudinally during hospitalization.ObjectivesThe purpose of this study was to examine preterm infants' sleep-wake state developmental trajectories and their associations with feeding progression during hospitalization.MethodsThis descriptive and exploratory study was a secondary analysis using data from a longitudinal two-group, randomized controlled trial evaluating the effects of early and late cycled light on health and developmental outcomes among extremely preterm infants who were born ≤28 weeks of gestational age. Sleep-wake states were assessed for two 2-hour interfeeding periods per day (day and night hours), 30 weeks postmenstrual age, and every 3 weeks until discharge. Occurrences of active sleep, quiet sleep, and waking were recorded every 10 seconds. Feeding progression was assessed based on an infant's postmenstrual age at five milestones: first enteral feeding, full enteral feeding, first oral feeding, half oral feeding, and full oral feeding. Trajectory analyses were used to describe developmental changes in sleep-wake states, feeding progression patterns, and associations between feeding progression and sleep-wake trajectories.ResultsActive sleep decreased while waking, and quiet sleep increased during hospitalization. Two distinct feeding groups were identified: typical and delayed feeding progression. In infants with delayed feeding progression, rates of active and quiet sleep development during the day were delayed compared to those with typical feeding progression. We also found that infants with delayed feeding progression were more likely to be awake more often during the night compared to infants with typical feeding progression.DiscussionsFindings suggest that delays in sleep-wake state development may be associated with delays in feeding progression during hospitalization. Infants with delayed feeding skill development may require more environmental protection to further support their sleep development.
Project description:Actigraphy, a method for inferring sleep/wake patterns based on movement data gathered using actigraphs, is increasingly used in population-based epidemiologic studies because of its ability to monitor activity in natural settings. Using special software, actigraphic data are analyzed to estimate a range of sleep parameters. To date, despite extensive application of actigraphs in sleep research, published literature specifically detailing the methodology for derivation of sleep parameters is lacking; such information is critical for the appropriate analysis and interpretation of actigraphy data. Reporting of sleep parameters has also been inconsistent across studies, likely reflecting the lack of consensus regarding the definition of sleep onset and offset. In addition, actigraphy data are generally underutilized, with only a fraction of the sleep parameters generated through actigraphy routinely used in current sleep research. The objectives of this paper are to review existing algorithms used to estimate sleep/wake cycles from movement data, demonstrate the rules/methods used for estimating sleep parameters, provide clear technical definitions of the parameters, and suggest potential new measures that reflect intraindividual variability. Utilizing original data collected using Motionlogger Sleep Watch (Ambulatory Monitoring Inc., Ardsley, NY), we detail the methodology and derivation of 29 nocturnal sleep parameters, including those both widely and rarely utilized in research. By improving understanding of the actigraphy process, the information provided in this paper may help: ensure appropriate use and interpretation of sleep parameters in future studies; enable the recalibration of sleep parameters to address specific goals; inform the development of new measures; and increase the breadth of sleep parameters used.
Project description:The implementation of video-based non-contact technologies to monitor the vital signs of preterm infants in the hospital presents several challenges, such as the detection of the presence or the absence of a patient in the video frame, robustness to changes in lighting conditions, automated identification of suitable time periods and regions of interest from which vital signs can be estimated. We carried out a clinical study to evaluate the accuracy and the proportion of time that heart rate and respiratory rate can be estimated from preterm infants using only a video camera in a clinical environment, without interfering with regular patient care. A total of 426.6 h of video and reference vital signs were recorded for 90 sessions from 30 preterm infants in the Neonatal Intensive Care Unit (NICU) of the John Radcliffe Hospital in Oxford. Each preterm infant was recorded under regular ambient light during daytime for up to four consecutive days. We developed multi-task deep learning algorithms to automatically segment skin areas and to estimate vital signs only when the infant was present in the field of view of the video camera and no clinical interventions were undertaken. We propose signal quality assessment algorithms for both heart rate and respiratory rate to discriminate between clinically acceptable and noisy signals. The mean absolute error between the reference and camera-derived heart rates was 2.3 beats/min for over 76% of the time for which the reference and camera data were valid. The mean absolute error between the reference and camera-derived respiratory rate was 3.5 breaths/min for over 82% of the time. Accurate estimates of heart rate and respiratory rate could be derived for at least 90% of the time, if gaps of up to 30 seconds with no estimates were allowed.
Project description:Background: Sleep is an important determinant of brain development in preterm infants. Its temporal organization varies with gestational age (GA) and post-menstrual age (PMA) but little is known about how sleep develops in very preterm infants. The objective was to study the correlation between the temporal organization of quiet sleep (QS) and maturation in premature infants without severe complications during their neonatal hospitalization. Methods: Percentage of time spent in QS and average duration of time intervals (ADI) spent in QS were analyzed from a cohort of newborns with no severe complications included in the Digi-NewB prospective, multicentric, observational study in 2017-19. Three groups were analyzed according to GA: Group 1 (27-30 weeks), Group 2 (33-37 weeks), Group 3 (>39 weeks). Two 8-h video recordings were acquired in groups 1 and 2: after birth (T1) and before discharge from hospital (T2). The annotation of the QS phases was performed by analyzing video recordings together with heart rate and respiratory traces thanks to a dedicated software tool of visualization and annotation of multimodal long-time recordings, with a double expert reading. Results are expressed as median (interquartile range, IQR). Correlations were analyzed using a linear mixed model. Results: Five newborns were studied in each group (160 h of recording). Median time spent in QS increased from 13.0% [IQR: 13-20] to 28.8% [IQR: 27-30] and from 17.0% [IQR: 15-21] to 29.6% [IQR: 29.5-31.5] in Group 1 and 2, respectively. Median ADI increased from 54 [IQR: 53-54] to 288 s [IQR: 279-428] and from 90 [IQR: 84-96] to 258 s [IQR: 168-312] in Group 1 and 2. Both groups reach values similar to that of group 3, respectively 28.2% [IQR: 24.5-31.3] and 270 s [IQR: 210-402]. The correlation between PMA and time spent in QS or ADI were, respectively 0.73 (p < 10-4) and 0.46 (p = 0.06). Multilinear analysis using temporal organization of QS gave an accurate estimate of PMA (r 2 = 0.87, p < 0.001). Conclusion: The temporal organization of QS is correlated with PMA in newborns without severe complication. An automated standardized continuous behavioral quantification of QS could be interesting to monitor during the hospitalization stay in neonatal units.
Project description:PurposeThe aim of this study was to determine whether massage therapy can be used as an adjunct intervention to induce sleep in infants born preterm.MethodsThirty infants born at a minimum of 28 weeks gestational age, who were at the time of the study between 32 and 48 weeks adjusted gestational age, were randomly assigned to receive massage therapy on 1 day and not receive massage on an alternate day. The Motionlogger Micro Sleep Watch Actigraph recorded lower extremity activity on the morning of each day.ResultsNo significant difference was found between groups for sleep efficiency (P = .13) during the time period evaluated. Groups differed significantly during the time period after the massage ended with more infants sleeping on the nonmassage day (χ = 4.9802, P = .026).ConclusionsMassage is well tolerated in infants born preterm and infants do not fall asleep faster after massage than without massage.