Project description:Tim23 is an essential channel-forming subunit of the presequence translocase recruiting multiple components for assembly of the core complex, thereby regulating the protein translocation process. However, understanding of the precise interaction of subunits associating with Tim23 remains largely elusive. Our findings highlight that transmembrane helix 1 (TM1) is required for homodimerization of Tim23, while, together with TM2, it is involved in preprotein binding within the channel. Based on our evidence, we predict that the TM1 and TM2 from each dimer are involved in the formation of the central translocation pore, aided by Tim17. Furthermore, TM2 is also involved in the recruitment of Tim21 and the presequence-associated motor (PAM) subcomplex to the Tim23 channel, while the matrix-exposed loop L1 generates specificity in their association with the core complex. Strikingly, our findings indicate that the C-terminal sequence of Tim23 is dispensable for growth and functions as an inhibitor for binding of Tim21. Our model conceptually explains the cooperative function between Tam41 and Pam17 subunits, while the antagonistic activity of Tim21 predominantly determines the bound and free forms of the PAM subcomplex during import.
Project description:Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import.
Project description:We compare the brain and fin RNA-seq profiles of wild-type and scn8ab mutant zebrafish, which exhibit locomotion and fin regeneration defects.
Project description:Ca2+ channel beta subunits regulate trafficking and gating (opening and closing) of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, they are thought to be modular structures composed of five domains (A-E) that are related to the large family of membrane associated guanylate-kinase (MAGUK) proteins. The crystal structures of the beta subunit core, B-D, domains have recently been reported; however, very little is known about the structures of the A and E domains. The N-terminal A domain is a hypervariable region that differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4). Furthermore, this domain undergoes alternative splicing to create multiple N-terminal structures within a given gene class that have distinct effects on gating. We have solved the solution structure of the A domain of the human beta4a subunit, a splice variant that we have shown previously to have alpha1 subunit subtype-specific effects on Ca2+ channel trafficking and gating.
Project description:Voltage-gated sodium (Na(V)) channels initiate electrical signalling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity and drug block is unknown. Here we report the crystal structure of a voltage-gated Na(+) channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage sensors at 2.7?Å resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures indicate that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ?4.6?Å wide, and water filled, with four acidic side chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high-field-strength anionic coordination site, which confers Na(+) selectivity through partial dehydration via direct interaction with glutamate side chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs. This structure provides the template for understanding electrical signalling in excitable cells and the actions of drugs used for pain, epilepsy and cardiac arrhythmia at the atomic level.
Project description:Autoimmune encephalopathies (AEs) are a heterogeneous group of neurological disorders that affect cognition. Although memory difficulties are commonly endorsed, few reports of AEs inclusively assess all cognitive domains in detail. Our aim was to perform an unbiased cognitive evaluation of AE patients with voltage-gated potassium channel complex antibodies (VGKCC -Abs) in order to delineate cognitive strengths and weaknesses.Serial VGKCC -Ab AE subjects (n = 12) were assessed with a comprehensive evaluation of memory, executive functions, visuospatial skills and language. Clinical magnetic resonance imaging (MRI) (n = 10/12) was evaluated. Five subjects had serial cognitive testing available, permitting descriptive analysis of change.Subjects demonstrated mild to moderate impairment in memory (mean Z = -1.9) and executive functions (mean Z = -1.5), with variable impairments in language and sparing of visuospatial skills. MRI findings showed T2 hyperintensities in medial temporal lobe (10/10) and basal ganglia (2/10). Serial cognitive examination revealed heterogeneity in cognitive function; whereas most patients improved in one or more domains, residual impairments were observed in some patients.This study augments previous neuropsychological analyses in VGKCC -Ab AE by identifying not only memory and executive function deficits but also language impairments, with preservation of visuospatial functioning. The study further highlights the importance of domain-specific testing to parse out the complex cognitive phenotypes of VGKCC -Ab AE.
Project description:ObjectiveTo assess the clinical and immunologic findings in children with voltage-gated potassium channel (VGKC)-complex antibodies (Abs).MethodsThirty-nine of 363 sera, referred from 2 pediatric centers from 2007 to 2013, had been reported positive (.100 pM) for VGKC-complex Abs. Medical records were reviewed retrospectively and the patients’ condition was independently classified as inflammatory (n 5 159) or noninflammatory (n 5 204). Positive sera (.100 pM) were tested/retested for the VGKC complex Ab–positive complex proteins LGI1 and CASPR2, screened for binding to live hippocampal neurons, and 12 high-titer sera (.400 pM) tested by radioimmunoassay for binding to VGKC Kv1 subunits with or without intracellular postsynaptic density proteins.ResultsVGKC-complex Abs were found in 39 children, including 20% of encephalopathies and 7.6% of other conditions (p 5 0.001). Thirty children had inflammatory conditions and 9 had noninflammatory etiologies but titers.400 pM (n512) were found only in inflammatory diseases (p , 0.0001). Four sera, including from 2 children with coexisting NMDA receptor Abs and one with Guillain-Barré syndrome and Abs to both LGI1 and CASPR2, bound to hippocampal neurons. None of the sera bound detectably to VGKC Kv1 subunits on live HEK cells, but 4 of 12 .400 pM sera immunoprecipitated VGKC Kv1 subunits, with or without postsynaptic densities, extracted from transfected cells.ConclusionPositive VGKC-complex Abs cannot be taken to indicate a specific clinical syndrome in children, but appear to be a nonspecific biomarker of inflammatory neurologic diseases, particularly of encephalopathy. Some of the Abs may bind to intracellular epitopes on the VGKC subunits, or to the intracellular interacting proteins, but in many the targets remain undefined.
Project description:N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner.
Project description:Voltage-gated potassium (K(v)) channels are gated by the movement of the transmembrane voltage sensor, which is coupled, through the helical S4-S5 linker, to the potassium pore. We determined the single-particle cryo-electron microscopy structure of mammalian K(v)10.1, or Eag1, bound to the channel inhibitor calmodulin, at 3.78 angstrom resolution. Unlike previous K(v) structures, the S4-S5 linker of Eag1 is a five-residue loop and the transmembrane segments are not domain swapped, which suggest an alternative mechanism of voltage-dependent gating. Additionally, the structure and position of the S4-S5 linker allow calmodulin to bind to the intracellular domains and to close the potassium pore, independent of voltage-sensor position. The structure reveals an alternative gating mechanism for K(v) channels and provides a template to further understand the gating properties of Eag1 and related channels.
Project description:Tim17 is a central, membrane-embedded subunit of the mitochondrial protein import machinery. In this study, we show that Tim17 contains a pair of highly conserved cysteine residues that form a structural disulfide bond exposed to the intermembrane space (IMS). This disulfide bond is critical for efficient protein translocation through the TIM23 complex and for dynamic gating of its preprotein-conducting channel. The disulfide bond in Tim17 is formed during insertion of the protein into the inner membrane. Whereas the import of Tim17 depends on the binding to the IMS protein Mia40, the oxidoreductase activity of Mia40 is surprisingly dispensable for Tim17 oxidation. Our observations suggest that Tim17 can be directly oxidized by the sulfhydryl oxidase Erv1. Thus, import and oxidation of Tim17 are mediated by the mitochondrial disulfide relay, though the mechanism by which the disulfide bond in Tim17 is formed differs considerably from that of soluble IMS proteins.