Unknown

Dataset Information

0

Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer.


ABSTRACT: Emerging data demonstrate that the activity of immune cells can be modulated by microbial molecules. Here, we show that the short-chain fatty acids (SCFAs) pentanoate and butyrate enhance the anti-tumor activity of cytotoxic T lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells through metabolic and epigenetic reprograming. We show that in vitro treatment of CTLs and CAR T cells with pentanoate and butyrate increases the function of mTOR as a central cellular metabolic sensor, and inhibits class I histone deacetylase activity. This reprogramming results in elevated production of effector molecules such as CD25, IFN-γ and TNF-α, and significantly enhances the anti-tumor activity of antigen-specific CTLs and ROR1-targeting CAR T cells in syngeneic murine melanoma and pancreatic cancer models. Our data shed light onto microbial molecules that may be used for enhancing cellular anti-tumor immunity. Collectively, we identify pentanoate and butyrate as two SCFAs with therapeutic utility in the context of cellular cancer immunotherapy.

SUBMITTER: Luu M 

PROVIDER: S-EPMC8249424 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2020-01-01 | GSE131788 | GEO
| S-EPMC6989004 | biostudies-literature
| S-EPMC9368239 | biostudies-literature
| S-EPMC8921067 | biostudies-literature
| S-EPMC9658011 | biostudies-literature
2013-03-11 | GSE43065 | GEO
| S-EPMC8043748 | biostudies-literature
| S-EPMC7709123 | biostudies-literature
2018-06-13 | GSE31585 | GEO
| S-EPMC8234078 | biostudies-literature