Ontology highlight
ABSTRACT: Background and objectives
Convalescent plasma (CP) has been embraced as a safe therapeutic option for coronavirus disease 2019 (COVID-19), while other treatments are developed. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not transmissible by transfusion, but bloodborne pathogens remain a risk in regions with high endemic prevalence of disease. Pathogen reduction can mitigate this risk; thus, the objective of this study was to evaluate the effect of riboflavin and ultraviolet light (R + UV) pathogen reduction technology on the functional properties of COVID-19 CP (CCP).Materials and methods
COVID-19 convalescent plasma units (n = 6) from recovered COVID-19 research donors were treated with R + UV. Pre- and post-treatment samples were tested for coagulation factor and immunoglobulin retention. Antibody binding to spike protein receptor-binding domain (RBD), S1 and S2 epitopes of SARS-CoV-2 was assessed by ELISA. Neutralizing antibody (nAb) function was assessed by pseudovirus reporter viral particle neutralization (RVPN) assay and plaque reduction neutralization test (PRNT).Results
Mean retention of coagulation factors was ≥70%, while retention of immunoglobulins was 100%. Starting nAb titres were low, but PRNT50 titres did not differ between pre- and post-treatment samples. No statistically significant differences were detected in levels of IgG (P ≥ 0·3665) and IgM (P ≥ 0·1208) antibodies to RBD, S1 and S2 proteins before and after treatment.Conclusion
R + UV PRT effects on coagulation factors were similar to previous reports, but no significant effects were observed on immunoglobulin concentration and antibody function. SARS-CoV-2 nAb function in CCP is conserved following R + UV PRT treatment.
SUBMITTER: Yonemura S
PROVIDER: S-EPMC8251479 | biostudies-literature |
REPOSITORIES: biostudies-literature