Project description:Neurodevelopmental disorders represent a challenging biological and medical problem due to their genetic and phenotypic complexity. In many cases, we lack the comprehensive understanding of disease mechanisms necessary for targeted therapeutic development. One key component that could improve both mechanistic understanding and clinical trial design is reliable molecular biomarkers. Presently, no objective biological markers exist to evaluate most neurodevelopmental disorders. Here, we discuss how systems biology and "omic" approaches can address the mechanistic and biomarker limitations in these afflictions. We present heuristic principles for testing the potential of systems biology to identify mechanisms and biomarkers of disease in the example of Rett syndrome, a neurodevelopmental disorder caused by a well-defined monogenic defect in methyl-CpG-binding protein 2 (MECP2). We propose that such an approach can not only aid in monitoring clinical disease severity but also provide a measure of target engagement in clinical trials. By deepening our understanding of the "big picture" of systems biology, this approach could even help generate hypotheses for drug development programs, hopefully resulting in new treatments for these devastating conditions.
Project description:LIS1 is the main causative gene for lissencephaly, while MeCP2 is the main causative gene for Rett syndrome, both of which are neurodevelopmental diseases. Here we report nuclear functions for LIS1 and identify previously unrecognized physical and genetic interactions between the products of these two genes in the cell nucleus, that has implications on MeCP2 organization, neuronal gene expression and mouse behavior. Reduced LIS1 levels affect the association of MeCP2 with chromatin. Transcriptome analysis of primary cortical neurons derived from wild type, Lis1±, MeCP2-/y, or double mutants mice revealed a large overlap in the differentially expressed (DE) genes between the various mutants. Overall, our findings provide insights on molecular mechanisms involved in the neurodevelopmental disorders lissencephaly and Rett syndrome caused by dysfunction of LIS1 and MeCP2, respectively.
Project description:In this narrative review, we summarize recent pieces of evidence of the role of microbiota alterations in Rett syndrome (RTT). Neurological problems are prominent features of the syndrome, but the pathogenic mechanisms modulating its severity are still poorly understood. Gut microbiota was recently demonstrated to be altered both in animal models and humans with different neurodevelopmental disorders and/or epilepsy. By investigating gut microbiota in RTT cohorts, a less rich microbial community was identified which was associated with alterations of fecal microbial short-chain fatty acids. These changes were positively correlated with severe clinical outcomes. Indeed, microbial metabolites can play a crucial role both locally and systemically, having dynamic effects on host metabolism and gene expression in many organs. Similar alterations were found in patients with autism and down syndrome as well, suggesting a potential common pathway of gut microbiota involvement in neurodevelopmental disorders.
Project description:Dendritic atrophy, defined as the reduction in complexity of the neuronal arborization, is a hallmark of several neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, affecting 1:10,000 girls worldwide, is mainly caused by mutations in the MECP2 gene and has no cure. We describe here an in vitro model of dendritic atrophy in Mecp2-/y mouse hippocampal primary cultures, suitable for phenotypic drug-screening. Using High-Content Imaging techniques, we systematically investigated the impact of culturing determinants on several parameters such as neuronal survival, total dendritic length, dendritic endpoints, soma size, cell clusterization, spontaneous activity. Determinants included cell-seeding density, glass or polystyrene substrates, coating with poly-Ornithine with/without Matrigel and miniaturization from 24 to 96-half surface multiwell plates. We show that in all plate-sizes at densities below 320 cells/mm2, morphological parameters remained constant while spontaneous network activity decreased according to the cell-density. Mecp2-/y neurons cultured at 160 cells/mm2 density in 96 multiwell plates, displayed significant dendritic atrophy and showed a marked increase in dendritic length following treatment with Brain-derived neurotrophic factor (BDNF) or Mirtazapine. In conclusion, we have established a phenotypic assay suitable for fast screening of hundreds of compounds, which may be extended to other neurodevelopmental diseases with dendritic atrophy.
Project description:Asparaginyl endopeptidase (AEP or legumain) is a lysosomal cysteine protease that cleaves protein substrates on the C-terminal side of asparagine. AEP plays a pivotal role in the endosome/lysosomal degradation system and is implicated in antigen processing. The processing of the lysosomal proteases cathepsins in kidney is completely defective in AEP-deficient mice with accumulation of macromolecules in the lysosomes, which is typically seen in lysosomal disorders. Here we show that mutant mice lacking AEP develop fever, cytopenia, hepatosplenomegaly, and hemophagocytosis, which are primary pathological manifestations of hemophagocytic syndrome/hemophagocytic lymphohistiocytosis (HLH). Moreover, AEP deficiency provokes extramedullary hematopoiesis in the spleen and abnormally enlarged histiocytes with ingested red blood cells (RBCs) in bone marrow. Interestingly, RBCs from AEP-null mice are defective in plasma membrane components. Further, AEP-null mice display lower natural killer cell activity, but none of the major cytokines is substantially abnormal. These results indicate that AEP might be a previously unrecognized component in HLH pathophysiology.
Project description:Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Project description:BACKGROUND: Neurodevelopmental disorders are impairments of brain function that affect emotion, learning, and memory. Copy number variations of contactin genes (CNTNs), including CNTN3, CNTN4, CNTN5, and CNTN6, have been suggested to be associated with these disorders. However, phenotypes have been reported in only a handful of patients with copy number variations involving CNTNs. METHODS: From January 2009 to January 2013, 3724 patients ascertained through the University of Pittsburgh Medical Center were referred to our laboratory for clinical array comparative genomic hybridization testing. We screened this cohort of patients to identify individuals with the 3p26.3 copy number variations involving the CNTN6 gene, and then retrospectively reviewed the clinical information and family history of these patients to determine the association between the 3p26.3 copy number variations and neurodevelopmental disorders. RESULTS: Fourteen of the 3724 patients had 3p26.3 copy number variations involving the CNTN6 gene. Thirteen of the 14 patients with these CNTN6 copy number variations presented with various neurodevelopmental disorders including developmental delay, autistic spectrum disorders, seizures and attention deficit hyperactivity disorder. Family history was available for 13 of the 14 patients. Twelve of the thirteen families have multiple members with neurodevelopmental and neuropsychiatric disorders including attention deficit hyperactivity disorder, seizures, autism spectrum disorder, intellectual disability, schizophrenia, depression, anxiety, learning disability, and bipolar disorder. CONCLUSIONS: Our findings suggest that deletion or duplication of the CNTN6 gene is associated with a wide spectrum of neurodevelopmental behavioral disorders.
Project description:INTRODUCTION:Hand stereotypies (HS) are a primary diagnostic criterion for Rett syndrome (RTT) but are difficult to characterize and quantify systematically. METHODS:We collected video on 27 girls (2-12 years of age) with classic RTT who participated in a mecasermin trial. The present study focused exclusively on video analyses, by reviewing two five-minute windows per subject to identify the two most common HS. Three raters with expertise in movement disorders independently rated the five-minute windows using standardized terminology to determine the level of agreement. We iteratively refined the protocol in three stages to improve descriptive accuracy, categorizing HS as "central" or "peripheral," "simple" or "complex," scoring each hand separately. Inter-rater agreement was analyzed using Kappa statistics. RESULTS:In the initial protocol evaluating HS by video, inter-rater agreement was 20.7%. In the final protocol, inter-rater agreement for the two most frequent HS was higher than the initial protocol at 50%. CONCLUSION:Phenotypic variability makes standardized evaluation of HS in RTT a challenge; we achieved only 50% level of agreement and only for the most frequent HS. Therefore, objective measures are needed to evaluate HS.
Project description:Rett syndrome (RTT, MIM#312750) is a neurodevelopmental disorder that is classified as an autism spectrum disorder. Clinically, RTT is characterized by psychomotor regression with loss of volitional hand use and spoken language, the development of repetitive hand stereotypies, and gait impairment. The majority of people with RTT have mutations in Methyl-CpG-binding Protein 2 (MECP2), a transcriptional regulator. Interestingly, alterations in the function of the protein product produced by MECP2, MeCP2, have been identified in a number of other clinical conditions. The many clinical features found in RTT and the various clinical problems that result from alteration in MeCP2 function have led to the belief that understanding RTT will provide insight into a number of other neurological disorders. Excitingly, RTT is reversible in a mouse model, providing inspiration and hope that such a goal may be achieved for RTT and potentially for many neurodevelopmental disorders.
Project description:Epilepsy is common in Rett syndrome, an X-linked dominant disorder caused by mutations in the MECP2 gene, and in Rett-related disorders, such as MECP2 duplication. However, neither the longitudinal course of epilepsy nor the patterns of seizure onset and remission have been described in Rett syndrome and related conditions. The present study summarizes the findings of the Rett syndrome Natural History study. Participants with clinical Rett syndrome and those with MECP2 mutations without the clinical syndrome were recruited through the Rett Natural History study from 2006 to 2015. Clinical details were collected, and cumulative lifetime prevalence of epilepsy was determined using the Kaplan-Meier estimator. Risk factors for epilepsy were assessed using Cox proportional hazards models. Of 1205 participants enrolled in the study, 922 had classic Rett syndrome, and 778 of these were followed longitudinally for 3939 person-years. The diagnosis of atypical Rett syndrome with a severe clinical phenotype was associated with higher prevalence of epilepsy than those with classic Rett syndrome. While point prevalence of active seizures ranged from 30% to 44%, the estimated cumulative lifetime prevalence of epilepsy using Kaplan-Meier approached 90%. Specific MECP2 mutations were not significantly associated with either seizure prevalence or seizure severity. In contrast, many clinical features were associated with seizure prevalence; frequency of hospitalizations, inability to walk, bradykinesia, scoliosis, gastrostomy feeding, age of seizure onset, and late age of diagnosis were independently associated with higher odds of an individual having epilepsy. Aggressive behaviour was associated with lower odds. Three distinct patterns of seizure prevalence emerged in classic Rett syndrome, including those who did not have seizures throughout the study, those who had frequent relapse and remission, and those who had relentless seizures. Although 248 of those with classic Rett syndrome and a history of seizures were in terminal remission at last contact, only 74 (12% of those with a history of epilepsy) were seizure free and off anti-seizure medication. When studied longitudinally, point prevalence of active seizures is relatively low in Rett syndrome, although lifetime risk of epilepsy is higher than previously reported. While daily seizures are uncommon in Rett syndrome, prolonged remission is less common than in other causes of childhood onset epilepsy. Complete remission off anti-seizure medications is possible, but future efforts should be directed at determining what factors predict when withdrawal of medications in those who are seizure free is propitious.