Project description:Background and objectivesThe implications of the genetic component in the initiation and development of chronic lymphoproliferative disorders have been the subject of intense research efforts. Some of the most important genes involved in the occurrence and evolution of these pathologies are the HLA genes. The aim of this study is to analyze, for the first time, possible associations between chronic lymphoproliferative diseases and certain HLA alleles in the Romanian population.Materials and methodsThis study included 38 patients with chronic lymphoproliferative disorders, diagnosed between 2021 and 2022 at Fundeni Clinical Institute, Bucharest, Romania, and 50 healthy controls. HLA class I and class II genes (HLA-A/B/C, HLA-DQB1/DPB1/DRB1) were investigated by doing high resolution genotyping using sequence specific primers (SSP).ResultsSeveral HLA alleles were strongly associated with chronic lymphoproliferative disorders. The most important finding was that the HLA-C*02:02 (p = 0.002, OR = 1.101), and HLA-C*12:02 (p = 0.002, OR = 1.101) have a predisposing role in the development of chronic lymphoproliferative disorders. Moreover, we identified that HLA-A*11:01 (p = 0.01, OR = 0.16), HLA-B*35:02 (p = 0.037, OR = 0.94), HLA-B*81:01 (p = 0.037, OR = 0.94), HLA-C*07:02 (p = 0.036, OR = 0.34), HLA-DRB1*11:01 (p = 0.021, OR = 0.19), and HLA-DRB1*13:02 (p = 0.037, OR = 0.94), alleles have protective roles.ConclusionsOur study indicates that HLA-C*02:02 and HLA-C*12:02 are positively associated with chronic lymphoproliferative disorders for our Romanian patients while HLA-DRB1*11:01, HLA-DRB1*13:02, and HLA-B*35:02 alleles have a protective role against these diseases.
Project description:B-cell receptor (BCR) signaling is essential for the development of B cells and has a critical role in B-cell neoplasia. Increasing evidence indicates an association between chronic hepatitis C virus (HCV) infection and B-cell lymphoma, however, the mechanisms by which HCV causes B-cell lymphoproliferative disorder are still unclear. Herein, we demonstrate the expression of HCV viral proteins in B cells of HCV-infected patients and show that HCV upregulates BCR signaling in human primary B cells. HCV nonstructural protein NS3/4A interacts with CHK2 and downregulates its activity, modulating HuR posttranscriptional regulation of a network of target mRNAs associated with B-cell lymphoproliferative disorders. Interestingly, the BCR signaling pathway was found to have the largest number of transcripts with increased association with HuR and was upregulated by NS3/4A. Our study reveals a previously unidentified role of NS3/4A in regulation of host BCR signaling during HCV infection, contributing to a better understanding of the molecular mechanisms underlying HCV-associated B-cell lymphoproliferative disorders.
Project description:Post-transplant lymphoproliferative disorders of T- or NK-cell origin (T/NK-PTLD) are rare entities and their genetic basis is unclear. We performed targeted sequencing of 465 cancer-related genes and high-resolution copy number analysis in 17 T-PTLD and 2 NK-PTLD cases. Overall, 377 variants were detected, with an average of 20 variants per case. Mutations of epigenetic modifier genes (TET2, KMT2C, KMT2D, DNMT3A, ARID1B, ARID2, KDM6B, n=11). and inactivation of TP53 by mutation and/or deletion(n=6) were the most frequent alterations, seen across disease subtypes, followed by mutations of JAK/STAT pathway genes (n=5). Novel variants, including mutations in TBX3 (n=3), MED12 (n=3) and MTOR (n=1), were observed as well. High-level microsatellite instability was seen in 1 of 14 (7%) cases, which had a heterozygous PMS2 mutation. Complex copy number changes were detected in 8 of 16 (50%) cases and disease subtype-specific aberrations were also identified. In contrast to B-cell PTLDs, the molecular and genomic alterations observed in T/NK-PTLD appear similar to those reported for peripheral T-cell lymphomas occurring in immunocompetent hosts, which may suggest common genetic mechanisms of lymphoma development.
Project description:B-cell receptor (BCR) signaling is essential for the development of B-cells and plays a critical role in B-cell neoplasia. Increasing evidence indicates an association between chronic hepatitis C virus (HCV) infection and B-cell lymphoma, however, the mechanisms by which HCV causes B-cell lymphoproliferative disorder are still unclear. Herein, we demonstrate the expression of HCV viral proteins in B-cells of HCV-infected patients and show that HCV up-regulates BCR signaling in human primary B-cells. HCV nonstructural protein NS3/4A interacts with CHK2 and down-regulates its activity, modulating HuR posttranscriptional regulation of a network of target mRNAs associated with B-cell lymphoproliferative disorders. Interestingly, the BCR signaling pathway was found to have the largest number of transcripts with increased association with HuR and was up-regulated by NS3/4A. Our study reveals a previously unidentified role of NS3/4A in regulation of host BCR signaling during HCV infection, contributing to a better understanding of the molecular mechanisms underlying HCV-associated B-cell lymphoproliferative disorders.
Project description:Cyclin-dependent protein kinase 6 (CDK6), in cooperation with cyclin Ds, drives cell cycle progression from G1 to S phase through phosphorylation and subsequent inactivation of retinoblastoma 1 protein. Alteration of this pathway results in both nonhematologic and hematologic malignancies, which include a small subset of B-cell lymphoproliferative disorders (BLPDs). We identified 5 cases of BLPD that carried CDK6 chromosomal translocations and characterized their clinical, pathologic, immunophenotypic, and genetic features. Common clinical characteristics included marked neoplastic lymphocytosis, systemic lymphadenopathy, splenomegaly, and bone marrow involvement. Three patients were diagnosed with low-grade B-cell lymphoma and had an indolent clinical course, and 2 patients (one who transformed to large B-cell lymphoma, and the other who was initially diagnosed with a high-grade B-cell lymphoma) had an aggressive clinical course. Immunophenotypically, the neoplastic B cells expressed CD5, CDK6, and cytoplasmic retinoblastoma 1 protein in all cases, expressed phospho-RB, p27kip1, and cyclin D2 in most cases, and uniformly lacked expression of all other cyclins. In 4 cases, the CDK6 translocation partner was kappa immunoglobulin light-chain gene; and in the fifth case, the CDK6 translocation partner was unknown. These distinct clinicopathologic and cytogenetic features distinguish the CDK6 translocation-associated BLPDs (CDK6-BLPDs) from other mature B-cell lymphomas.
Project description:It is unknown whether pediatric monomorphic post-transplant lymphoproliferative disorders (mPTLD) display similar genetic features than the immunocompetent counterpart and if they resemble adult mPTLD. We have investigated 39 pediatric mPTLD, 33 diffuse large B-cell lymphoma (DLBCL) and six Burkitt lymphoma (BL), by an integrated approach, including fluorescence in situ hybridization, cell of origin determination (COO), targeted gene sequencing and copy-number arrays. According to COO, 24/28 DLBCL (86%) were classified as activated B-cell (ABC) and all six BL were germinal center B cell (GCB)-type. Thirty-three out of 37 investigated mPTLD were positive for EBV infection. Overall, PTLD-BL carried mutations in MYC in addition to ID3 and DDX3X, ARID1A or CCND3 and a higher mutational burden than PTLD-DLBCL (12.3 vs 6.2, P = 0.01). CN profile of PTLD-BL was less complex than in IC-BL (1 vs 6.26; P < 0.005). PTLD-DLBCL showed a very heterogeneous genomic profile characterized by a lower number of mutations (2.4 vs 6.5, P=0.01) and less CNA (2.10 vs 4.36 ; P < 0.05) than in IC patients. Pathway enrichment analysis revealed that epigenetic modifiers and Notch pathway (4 cases each) were the most recurrently affected. In conclusion, these findings further unravel for the first time the molecular heterogeneity of pediatric mPTLD and provide new parameters for the design of more effective therapeutic strategies.
Project description:Over the last few years, treatment principles have been changed towards more targeted therapy for many B-cell lymphoma subtypes and in chronic lymphocytic leukemia (CLL). Immunotherapeutic modalities, namely monoclonal antibodies (mAbs), bispecific antibodies (bsAbs), antibody-drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cell therapy, commonly use B-cell-associated antigens (CD19, CD20, CD22, and CD79b) as one of their targets. T-cell engagers (TCEs), a subclass of bsAbs, work on a similar mechanism as CAR-T cell therapy without the need of previous T-cell manipulation. Currently, several anti-CD20xCD3 TCEs have demonstrated promising efficacy across different lymphoma subtypes with slightly better outcomes in the indolent subset. Anti-CD19xCD3 TCEs are being developed as well but only blinatumomab has been evaluated in clinical trials yet. The results are not so impressive as those with anti-CD19 CAR-T cell therapy. Antibody-drug conjugates targeting different B-cell antigens (CD30, CD79b, CD19) seem to be effective in combination with mAbs, standard chemoimmunotherapy, or immune checkpoint inhibitors. Further investigation will show whether immunotherapy alone or in combinatory regimens has potential to replace chemotherapeutic agents from the first line treatment.
Project description:This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition.NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions.Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.
Project description:Hepatitis C virus (HCV) has been identified as one of the major risk factors for type II mixed cryoglobulinemia (MC), during the clinical evolution of chronic hepatitis, which may lead to development of B cell non-Hodgkin's lymphoma (NHL). We have previously shown that the candidate idiotype vaccine, based on the IGKV3-20 light chain protein, is able to induce activation and maturation of circulating antigen presenting cells (APCs) in both HCV-positive and HCV-negative healthy control subjects, with production of Th2-type cytokines. Here, the effect of the recombinant IGKV3-20 protein on human peripheral blood mononuclear cells (PBMCs) from HCV-positive subjects, with known blood levels of cryoglobulins, is shown via gene expression profiling analysis combined to multiparameter flow cytometry and multiplex analyses of cytokines.
Project description:B cell chronic lymphoproliferative diseases (B-CLPD) are associated with secondary antibody deficiency and other innate and adaptive immune defects, whose impact on infectious risk has not been systematically addressed. We performed an immunological analysis of a cohort of 83 B-CLPD patients with recurrent and/or severe infections to ascertain the clinical relevance of the immune deficiency expression. B-cell defects were present in all patients. Patients with combined immune defect had a 3.69-fold higher risk for severe infection (p = 0.001) than those with predominantly antibody defect. Interestingly, by Kaplan-Meier analysis, combined immune defect showed an earlier progression of cancer with a hazard ratio of 3.21, than predominantly antibody defect (p = 0.005). When B-CLPD were classified in low-degree, high-degree, and plasma cell dyscrasias, risk of severe disease and cancer progression significantly diverged in combined immune defect, compared with predominantly antibody defect (p = 0.001). Remarkably, an underlying primary immunodeficiency (PID) was suspected in 12 patients (14%), due to prior history of infections, autoimmune and granulomatous conditions, atypical or variegated course and compatible biological data. This first proposed SID classification might have relevant clinical implications, in terms of predicting severe infections and cancer progression, and might be applied to different B-CLPD entities.