Interfacial Polymerization at the Alkane/Ionic Liquid Interface.
Ontology highlight
ABSTRACT: Polymerization at the liquid-liquid interface has attracted much attention for synthesizing ultrathin polymer films for molecular sieving. However, it remains a major challenge to conduct this process outside the alkane-water interface since it not only suffers water-caused side reactions but also is limited to water-soluble monomers. Here, we report the interfacial polymerization at the alkane/ionic liquid interface (IP@AILI) where the ionic liquid acts as the universal solvent for diversified amines to synthesize task-specific polyamide nanofilms. We propose that IP@AILI occurs when acyl chloride diffuses from the alkane into the ionic liquid instead of being triggered by the diffusion of amines as in the conventional alkane-water system, which is demonstrated by thermodynamic partitioning and kinetic monitoring. The prepared polyamide nanofilms with precisely adjustable pore sizes display unprecedented permeability and selectivity in various separation processes.
SUBMITTER: Liu C
PROVIDER: S-EPMC8252436 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA